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Abstract: In this tutorial we present a brief introduction to SVM, and we discuss about SVM from 
published papers, workshop materials & material collected from books and material available online on 
the World Wide Web. In the beginning we try to define SVM and try to talk as why SVM, with a brief 
overview of statistical learning theory. The mathematical formulation of SVM is presented, and theory for 
the implementation of SVM is briefly discussed. Finally some conclusions on SVM and application areas 
are included. Support Vector Machines (SVMs) are competing with Neural Networks as tools for solving 
pattern recognition problems. This tutorial assumes you are familiar with concepts of Linear Algebra, real 
analysis and also understand the working of neural networks and have some background in AI. 
 
Introduction 
 
Machine Learning is considered as a subfield of Artificial Intelligence and it is concerned with 
the development of techniques and methods which enable the computer to learn. In simple terms 
development of algorithms which enable the machine to learn and perform tasks and activities. 
Machine learning overlaps with statistics in many ways. Over the period of time many techniques 
and methodologies were developed for machine learning tasks [1]. 

Support Vector Machine (SVM) was first heard in 1992, introduced by Boser, Guyon, and 
Vapnik in COLT-92. Support vector machines (SVMs) are a set of related supervised learning 
methods used for classification and regression [1]. They belong to a family of generalized linear 
classifiers. In another terms, Support Vector Machine (SVM) is a classification and regression 
prediction tool that uses machine learning theory to maximize predictive accuracy while 
automatically avoiding over-fit to the data. Support Vector machines can be defined as systems 
which use hypothesis space of a linear functions in a high dimensional feature space, trained with 
a learning algorithm from optimization theory that implements a learning bias derived from 
statistical learning theory. Support vector machine was initially popular with the NIPS 
community and now is an active part of the machine learning research around the world. SVM 
becomes famous when, using pixel maps as input; it gives accuracy comparable to sophisticated 
neural networks with elaborated features in a handwriting recognition task [2]. It is also being 
used for many applications, such as hand writing analysis, face analysis and so forth, especially 
for pattern classification and regression based applications. The foundations of Support Vector 
Machines (SVM) have been developed by Vapnik [3] and gained popularity due to many 
promising features such as better empirical performance. The formulation uses the Structural Risk 
Minimization (SRM) principle, which has been shown to be superior, [4], to traditional Empirical 
Risk Minimization (ERM) principle, used by conventional neural networks. SRM minimizes an 
upper bound on the expected risk, where as ERM minimizes the error on the training data. It is 
this difference which equips SVM with a greater ability to generalize, which is the goal in 
statistical learning. SVMs were developed to solve the classification problem, but recently they 
have been extended to solve regression problems [5].  

 

 



 
 

 

Statistical Learning Theory 
 
The statistical learning theory provides a framework for studying the problem of gaining 
knowledge, making predictions, making decisions from a set of data. In simple terms, it 
enables the choosing of the hyper plane space such a way that it closely represents the 
underlying function in the target space [6].   
 
In statistical learning theory the problem of supervised learning is formulated as follows. 
We are given a set of training data {(x1,y1)... (xl,yl)} in Rn × R sampled according to 
unknown probability distribution P(x,y), and a loss function V(y,f(x)) that measures the 
error, for a given x, f(x) is "predicted" instead of the actual value y. The problem consists 
in finding a function f that minimizes the expectation of the error on new data that is, 
finding a function f that minimizes the expected error: ∫ dy d y),P( ))f(V(y, xxx    [6] 
In statistical modeling we would choose a model from the hypothesis space, which is 
closest (with respect to some error measure) to the underlying function in the target 
space. More on statistical learning theory can be found on introduction to statistical 
learning theory [7]. 
 
Learning and Generalization 
 
Early machine learning algorithms aimed to learn representations of simple functions. 
Hence, the goal of learning was to output a hypothesis that performed the correct 
classification of the training data and early learning algorithms were designed to find 
such an accurate fit to the data [8]. The ability of a hypothesis to correctly classify data 
not in the training set is known as its generalization. SVM performs better in term of not 
over generalization when the neural networks might end up over generalizing easily [11]. 
Another thing to observe is to find where to make the best trade-off in trading complexity 
with the number of epochs; the illustration brings to light more information about this. 
The below illustration is made from the class notes. 

 
 
 

 
Figure 1: Number of Epochs Vs Complexity. [8][9][11] 



 
 

 

 
 
Introduction to SVM: Why SVM? 
 
Firstly working with neural networks for supervised and unsupervised learning showed 
good results while used for such learning applications. MLP’s uses feed forward and 
recurrent networks. Multilayer perceptron (MLP) properties include universal 
approximation of continuous nonlinear functions and include learning with input-output 
patterns and also involve advanced network architectures with multiple inputs and 
outputs [10]. 
 

 
Figure 2: a] Simple Neural Network b]Multilayer Perceptron. [10][11]. These are simple visualizations just to have a overview as how 
neural network looks like. 
 
There can be some issues noticed. Some of them are having many local minima and also 
finding how many neurons might be needed for a task is another issue which determines 
whether optimality of that NN is reached. Another thing to note is that even if the neural 
network solutions used tends to converge, this may not result in a unique solution [11].  
Now let us look at another example where we plot the data and try to classify it and we 
see that there are many hyper planes which can classify it. But which one is better? 

 
 



 
 

 

 Figure 3: Here we see that there are many hyper planes which can be fit in to classify the data but which one is the best is the right or 
correct solution. The need for SVM arises. (Taken Andrew W. Moore 2003) [2]. Note the legend is not described as they are sample 
plotting to make understand the concepts involved. 
 
 
 
From above illustration, there are many linear classifiers (hyper planes) that separate the 
data. However only one of these achieves maximum separation. The reason we need it is 
because if we use a hyper plane to classify, it might end up closer to one set of datasets 
compared to others and we do not want this to happen and thus we see that the concept of 
maximum margin classifier or hyper plane as an apparent solution. The next illustration 
gives the maximum margin classifier example which provides a solution to the above 
mentioned problem [8]. 

 
Figure 4: Illustration of Linear SVM. ( Taken  from Andrew W. Moore slides 2003) [2]. Note the legend is not described as they are 
sample plotting to make understand the concepts involved. 
 
Expression for Maximum margin is given as [4][8] (for more information visit [4]): 
 
 
 
The above illustration is the maximum linear classifier with the maximum range. In this 
context it is an example of a simple linear SVM classifier. Another interesting question is 
why maximum margin? There are some good explanations which include better empirical 
performance.  Another reason is that even if we’ve made a small error in the location of 
the boundary this gives us least chance of causing a misclassification. The other 
advantage would be avoiding local minima and better classification. Now we try to 
express the SVM mathematically and for this tutorial we try to present a linear SVM. The 
goals of SVM are separating the data with hyper plane and extend this to non-linear 
boundaries using kernel trick [8] [11].  For calculating the SVM we see that the goal is to 
correctly classify all the data. For mathematical calculations we have, 
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        [a] If Yi= +1;  
        [b] If Yi= -1;    wxi + b ≤ 1 
        [c] For all i;     yi (wi + b) ≥ 1 
 
In this equation x is a vector point and w is weight and is also a vector. So to separate the 
data [a] should always be greater than zero. Among all possible hyper planes, SVM 
selects the one where the distance of hyper plane is as large as possible.  If the training 
data is good and every test vector is located in radius r from training vector. Now if the 
chosen hyper plane is located at the farthest possible from the data [12]. This desired 
hyper plane which maximizes the margin also bisects the lines between closest points on 
convex hull of the two datasets. Thus we have [a], [b] & [c]. 

 
Figure 5: Representation of Hyper planes. [9] 
 
Distance of closest point on hyperplane to origin can be found by maximizing the x as x 
is on the hyper plane. Similarly for the other side points we have a similar scenario. Thus 
solving and subtracting the two distances we get the summed distance from the 
separating hyperplane to nearest points. Maximum Margin = M = 2 / ||w|| 
 
Now maximizing the margin is same as minimum [8]. Now we have a quadratic 
optimization problem and we need to solve for w and b. To solve this we need to 
optimize the quadratic function with linear constraints. The solution involves 
constructing a dual problem and where a Langlier’s multiplier αi is associated. We need 
to find w and b such that Φ (w) =½ |w’||w| is minimized;  

And for all {(xi, yi)}:  yi (w * xi + b) ≥ 1. 
Now solving: we get that w =Σαi * xi; b= yk- w *xk for any xk such that αk≠ 0 

wx+b=1 
wx+b=0 
wx’+b=-1 

1≥+ bwxi



 
 

 

Now the classifying function will have the following form:   f(x) = Σαi yi xi  * x + b                          

 Figure 6: Representation of Support Vectors (Copyright © 2003, Andrew W. Moore)[2] 
 
SVM Representation 
In this we present the QP formulation for SVM classification [4][8][12][13]. This is a 
simple representation only. 
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SVM classification, Dual formulation: 
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Variables ξi are called slack variables and they measure the error made at point (xi,yi).   
Training SVM becomes quite challenging when the number of training points is large. A 
number of methods for fast SVM training have been proposed [4][8][13]. 

 
Soft Margin Classifier  
 
In real world problem it is not likely to get an exactly separate line dividing the data 
within the space. And we might have a curved decision boundary. We might have a 
hyperplane which might exactly separate the data but this may not be desirable if the data 
has noise in it. It is better for the smooth boundary to ignore few data points than be 
curved or go in loops, around the outliers. This is handled in a different way; here we 
hear the term slack variables being introduced. Now we have, yi(w’x + b) ≥ 1 - Sk [4] 
[12]. This allows a point to be a small distance Sk on the wrong side of the hyper plane 
without violating the constraint. Now we might end up having huge slack variables which 
allow any line to separate the data, thus in such scenarios we have the Lagrangian 
variable introduced which penalizes the large slacks. 
 
min L = ½ w’w - ∑  λk ( yk (w’xk + b) + sk -1) +  α ∑ sk 
 
Where reducing α allows more data to lie on the wrong side of hyper plane and would be 
treated as outliers which give smoother decision boundary [12]. 
 



 
 

 

Kernal Trick 
 
Let’s first look at few definitions as what is a kernel and what does feature space mean? 
 
Kernel: If data is linear, a separating hyper plane may be used to divide the data. 
However it is often the case that the data is far from linear and the datasets are 
inseparable. To allow for this kernels are used to non-linearly map the input data to a 
high-dimensional space. The new mapping is then linearly separable [1]. A very simple 
illustration of this is shown below in figure 7 [9] [11] [20]. 
 

 Figure 7: Why use Kernels? [11][9] [20] 
 

This mapping is defined by the Kernel:                 
 Feature Space: Transforming the data into feature space makes it possible to define a 
similarity measure on the basis of the dot product. If the feature space is chosen suitably, 
pattern recognition can be easy [1]. 
 
 

Figure 8: Feature Space Representation [11][9]. 
Note the legend is not described as they are sample plotting to make understand the concepts involved. 
 
Now getting back to the kernel trick, we see that when w,b is obtained the problem is 
solved for a simple linear scenario in which data is separated by a hyper plane. The 
Kenral trick allows SVM’s to form nonlinear boundaries. Steps involved in kernel trick 
are given below [12] [24]. 
[a] The algorithm is expressed using only the inner products of data sets. This is also 
called as dual problem. 
[b] Original data are passed through non linear maps to form new data with respect to 
new dimensions by adding a pair wise product of some of the original data dimension to 
each data vector. 
[c] Rather than an inner product on these new, larger vectors, and store in tables and later 
do a table lookup, we can represent a dot product of the data after doing non linear 
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mapping on them. This function is the kernel function. More on kernel functions is given 
below. 
Kernal Trick: Dual Problem 
First we convert the problem with optimization to the dual form in which we try to 
eliminate w, and a Lagrangian now is only a function of λi. There is a mathematical 
solution for it but this can be avoided here as this tutorial has instructions to minimize the 
mathematical equations, I would describe it instead. To solve the problem we should 
maximize the LD with respect to λi.  The dual form simplifies the optimization and we see 
that the major achievement is the dot product obtained from this [4][8][12].  
 
 
Kernal Trick: Inner Product summarization 
Here we see that we need to represent the dot product of the data vectors used. The dot 
product of nonlinearly mapped data can be expensive. The kernel trick just picks a 
suitable function that corresponds to dot product of some nonlinear mapping instead 
[4][8][12]. Some of the most commonly chosen kernel functions are given below in later 
part of this tutorial. A particular kernel is only chosen by trial and error on the test set, 
choosing the right kernel based on the problem or application would enhance SVM’s 
performance. 
 
Kernel Functions 
 
The idea of the kernel function is to enable operations to be performed in the input space 
rather than the potentially high dimensional feature space. Hence the inner product does 
not need to be evaluated in the feature space. We want the function to perform mapping 
of the attributes of the input space to the feature space. The kernel function plays a 
critical role in SVM and its performance. It is based upon reproducing Kernel Hilbert 
Spaces [8] [14] [15] [18]. 

 
If K is a symmetric positive definite function, which satisfies Mercer’s Conditions, 

 

 
Then the kernel represents a legitimate inner product in feature space. The training set is 
not linearly separable in an input space. The training set is linearly separable in the 
feature space. This is called the “Kernel trick” [8] [12].  
 
The different kernel functions are listed below [8]:  More explanation on kernel functions 
can be found in the book [8]. The below mentioned ones are extracted from there and just 
for mentioning purposes are listed below. 
1] Polynomial: A polynomial mapping is a popular method for non-linear modeling. The 
second kernel is usually preferable as it avoids problems with the hessian becoming Zero. 

 



 
 

 

 
2] Gaussian Radial Basis Function: Radial basis functions most commonly with a 
Gaussian form 

            
3] Exponential Radial Basis Function:  A radial basis function produces a piecewise 
linear solution which can be attractive when discontinuities are acceptable. 
 

     
4] Multi-Layer Perceptron: The long established MLP, with a single hidden layer, also 
has a valid kernel representation. 

        
 
There are many more including Fourier, splines, B-splines, additive kernels and tensor 
products [8]. If you want to read more on kernel functions you could read the book [8]. 
 
Controlling Complexity in SVM: Trade-offs 
 
SVM is powerful to approximate any training data and generalizes better on given 
datasets. The complexity in terms of kernel affects the performance on new datasets [8].  
SVM supports parameters for controlling the complexity and above all SVM does not tell 
us how to set these parameters and we should be able to determine these Parameters by 
Cross-Validation on the given datasets [2] [11]. The diagram given below gives a better 
illustration. 
 

 
Figure 9: How to control complexity [2] [9]. Note the legend is not described as they are sample plotting to make understand the 
concepts involved. 

SVM for Classification 
SVM is a useful technique for data classification. Even though it’s considered that Neural 
Networks are easier to use than this, however, sometimes unsatisfactory results are 
obtained.  A classification task usually involves with training and testing data which 
consist of some data instances [21]. Each instance in the training set contains one target 



 
 

 

values and several attributes. The goal of SVM is to produce a model which predicts 
target value of data instances in the testing set which are given only the attributes [8]. 
 
Classification in SVM is an example of Supervised Learning. Known labels help indicate 
whether the system is performing in a right way or not. This information points to a 
desired response, validating the accuracy of the system, or be used to help the system 
learn to act correctly. A step in SVM classification involves identification as which are 
intimately connected to the known classes. This is called feature selection or feature 
extraction. Feature selection and SVM classification together have a use even when 
prediction of unknown samples is not necessary. They can be used to identify key sets 
which are involved in whatever processes distinguish the classes [8]. 

SVM for Regression 
SVMs can also be applied to regression problems by the introduction of an alternative 
loss function [8] [17]. The loss function must be modified to include a distance measure. 
The regression can be linear and non linear. Linear models mainly consist of the 
following loss functions, e-intensive loss functions, quadratic and Huber loss function. 
Similarly to classification problems, a non-linear model is usually required to adequately 
model data. In the same manner as the non-linear SVC approach, a non-linear mapping 
can be used to map the data into a high dimensional feature space where linear regression 
is performed. The kernel approach is again employed to address the curse of 
dimensionality. In the regression method there are considerations based on prior 
knowledge of the problem and the distribution of the noise. In the absence of such 
information Huber’s robust loss function, has been shown to be a good alternative [8] 
[16]. 
 

Applications of SVM 
SVM has been found to be successful when used for pattern classification problems. 
Applying the Support Vector approach to a particular practical problem involves 
resolving a number of questions based on the problem definition and the design involved 
with it. One of the major challenges is that of choosing an appropriate kernel for the 
given application [4]. There are standard choices such as a Gaussian or polynomial kernel 
that are the default options, but if these prove ineffective or if the inputs are discrete 
structures more elaborate kernels will be needed. By implicitly defining a feature space, 
the kernel provides the description language used by the machine for viewing the data. 
Once the choice of kernel and optimization criterion has been made the key components 
of the system are in place [8]. Let’s look at some examples. 

The task of text categorization is the classification of natural text documents into a fixed 
number of predefined categories based on their content. Since a document can be 
assigned to more than one category this is not a multi-class classification problem, but 
can be viewed as a series of binary classification problems, one for each category. One of 
the standard representations of text for the purposes of information retrieval provides an 
ideal feature mapping for constructing a Mercer kernel [25]. Indeed, the kernels somehow 
incorporate a similarity measure between instances, and it is reasonable to assume that 



 
 

 

experts working in the specific application domain have already identified valid 
similarity measures, particularly in areas such as information retrieval and generative 
models [25] [27]. 

Traditional classification approaches perform poorly when working directly because of 
the high dimensionality of the data, but Support Vector Machines can avoid the pitfalls of 
very high dimensional representations [12]. A very similar approach to the techniques 
described for text categorization can also be used for the task of image classification, and 
as in that case linear hard margin machines are frequently able to generalize well [8]. The 
first real-world task on which Support Vector Machines were tested was the problem of 
hand-written character recognition. Furthermore, multi-class SVMs have been tested on 
these data. It is interesting not only to compare SVMs with other classifiers, but also to 
compare different SVMs amongst themselves [23]. They turn out to have approximately 
the same performance, and furthermore to share most of their support vectors, 
independently of the chosen kernel. The fact that SVM can perform as well as these 
systems without including any detailed prior knowledge is certainly remarkable [25]. 

Strength and Weakness of SVM: 
 
The major strengths of SVM are the training is relatively easy. No local optimal, unlike 
in neural networks. It scales relatively well to high dimensional data and the trade-off 
between classifier complexity and error can be controlled explicitly. The weakness 
includes the need for a good kernel function [2] [4] [8] [12] [24]. 
 
Conclusion 
 
The tutorial presents an overview on SVM in parallel with a summary of the papers 
collected from the World Wide Web. Some of the important conclusions of this tutorial 
are summarized as follows. SVM are based on statistical learning theory. They can be 
used for learning to predict future data [25]. SVM are trained by solving a constrained 
quadratic optimization problem. SVM, implements mapping of inputs onto a high 
dimensional space using a set of nonlinear basis functions. SVM can be used to learn a 
variety of representations, such as neural nets, splines, polynomial estimators, etc, but 
there is a unique optimal solution for each choice of the SVM parameters [4]. This is 
different in other learning machines, such as standard Neural Networks trained using 
back propagation [26]. In short the development of SVM is an entirely different from 
normal algorithms used for learning and SVM provides a new insight into this learning. 
The four most major features of SVM are duality, kernels, convexity and sparseness [24]. 

 
Support Vector Machines acts as one of the best approach to data modeling. They 
combine generalization control as a technique to control dimensionality. The kernel 
mapping provides a common base for most of the commonly employed model 
architectures, enabling comparisons to be performed [8]. In classification problems 
generalization control is obtained by maximizing the margin, which corresponds to 
minimization of the weight vector in a canonical framework. The solution is obtained as a 



 
 

 

set of support vectors that can be sparse. The minimization of the weight vector can be 
used as a criterion in regression problems, with a modified loss function. Future 
directions include: A technique for choosing the kernel function and additional capacity 
control; Development of kernels with invariance. Finally, new directions are mentioned 
in new SVM-related learning formulations recently proposed by Vapnik [19]. 
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