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Lesson	Outline

• Look	more	closely	at	foldr
• Introduce	foldl:	like	foldr but	"in	the	other	
direction"

• Implement	foldl using	a	context	variable
• Look	at	an	application
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Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	
to:
– explain	what	foldr and	foldl compute
– explain	the	difference	between	foldr and	foldl
– explain	why	they	are	called	"fold	right"	and	"fold	
left"

– use	foldl in	a	function	definition
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Foldr:	the	general	picture
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(foldr f a (list x1 ... x5))



Another	picture	of	foldr
The	textbook	says:

;; foldr : (X Y -> Y) Y ListOfX -> Y 
;; (foldr f base (list x_1 ... x_n)) 
;;   = (f x_1 ... (f x_n base)) 

This	may	be	clearer	if	we	write	the	combiner	in	infix:
eg (x	- y)	instead	of	(f	x	y)	:

(foldr – a (list x1 ... xn)) =
x1 – (x2 – (... – (xn – a)))
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We	use	– instead	of	
+,	because	– is	not	
associative.		So	it	
makes	a	difference	
which	way	you	
associate
x1	– x2	– x3	– x4



What	if	we	wanted	to	associate	the	
other	way?

Instead	of	
x1 – (x2 – (... – (xn – a)))
suppose we wanted
(((a – x1) – x2) ... – xn)
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foldr associates	
its	operator	to	
the	right

foldl will	
associate	its	
operator	to	the	
left



For	this	computation,	the	pipeline	
goes	the	other	way
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Let's	write	the	code

;; We'll use the template:
(define (foldl f a lst)
(cond
[(empty? lst) ...]
[else (...

(first lst)  
(foldl ... (rest lst)))])
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We'll	need	to	figure	
out	what	goes	here.



What	if	lst is	empty?

• When	the	list	is	empty,	there	are	no	stages	in	
the	pipeline,	so	

(foldl f a empty) = a
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What	if	the	list	is	non-empty?
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So	for	a	non-empty	list

(foldl f a (cons x1 lst))
= (foldl f (f x1 a) lst)
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Putting	this	together

(define (foldl f a lst)
(cond

[(empty? lst) a]
[else (foldl f 

(f (first lst) a)
(rest lst))]))
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Let's	do	a	computation

(foldl - 1 (list 20 10 2))
= (foldl - 19 (list 10 2)) ;20-1 = 19
= (foldl - -9 (list 2))    ;10-19 = -9
= (foldl - 11 empty)       ;2-(-9) = 11
= 11
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What's	the	contract?
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This	part	is	like	foldr:	We	can	label	all	the	
vertical	arrows	as	X's	and	all	the	horizontal	
arrows	as	Y's,	so	the	contract	becomes

(X Y -> Y) Y ListOfX -> Y



Purpose	Statement	(1)

• Textbook	description:
;; foldl : (X Y -> Y) Y ListOfX -> Y 
;; (foldl f base (list x_1 ... x_n)) 
;;   = (f x_n ... (f x_1 base)) 
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Can	we	describe	this	using	an	
invariant?

• To	do	this,	let's	think	about	where	we	are	in	the	
middle	of	a	computation

• At	this	point,	we've	processed	x1	and	x2,	and	we	
are	looking	at	the	sublist (x3 ... xn)
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(((a – x1) – x2) x3 ... – xn)



Purpose	Statement	using	invariant
GIVEN: a function f, a value a, and a sublist lst
WHERE: lst is a sublist of some larger list lst0
AND: a is the result of applying f to some starting

element a0 and the elements of lst0 that are above lst
RETURNS: the result of applying f to the starting element a0

and all the elements of lst0.
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Here's	an	alternate	purpose	statement	
that	describes	the	situation	in
the	middle	of	the	pipeline.

You	don't	have	to	use	this	purpose	
statement;	you	can	use	the	one	from	the	
book	if	it	is	easier	for	you.



Let's	apply	this	to	subtraction
;; diff : NonEmptyListOfNumber -> Number
;; GIVEN: a nonempty list of numbers
;; RETURNS: the result of subtracting the numbers, from
;;          left to right.
;; EXAMPLE:
;; (diff (list 10 5 3)) = 2

;; We'll use the data definition
;; NELON = (cons Number ListOfNumber)
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This	was	guided	practice	
7.1



Code,	with	simple	purpose	statement

(define (diff nelst)
(diff-inner (first nelst) (rest nelst)))

;; diff-inner : Number ListOfNumber
;; RETURNS: the result of subtracting each of the numbers in lon
;; from num
(define (diff-inner num lon)

(cond
[(empty? lon) num]
[else (diff-inner

(- num (first lon))   ;; this is (f a (first lon))
;; different order of arguments
;; than foldl

(rest lon))]))
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Code,	with	fancier	purpose	statement
(define (diff nelst)

(diff-inner (first nelst) (rest nelst)))

;; diff-inner : Number ListOfNumber
;; GIVEN: a number sofar and a sublist lon of some list lon0
;; WHERE: sofar is the result of subtracting all the numbers in
;; lon0 that are above lon.
;; RETURNS: the result of subtracting all the numbers in lon0.
(define (diff-inner sofar lon)

(cond
[(empty? lon) sofar]
[else (diff-inner

(- sofar (first lon)) ;; this is (f a (first lon))
;; different order of arguments
;; than foldl

(rest lon))]))
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You	could	use	either	this	purpose	
statement	or	the	one	on	the	
preceding	slide.		Both	are	fine.

sofar is	a	good	
name	for	this	
argument



Or	using	foldl
(define (diff nelst)
(foldl
(lambda (x sofar) (- sofar x))  ;; foldl wants an X Y -> Y
(first nelst) 
(rest nelst)))
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sofar is	a	good	name	for	this	
argument,	because	it	describes	
where	the	value	comes	from.



Another	application:	Simulation

;; simulating a process

;; Wishlist:
;; next-state : Move State -> State

;; simulate : State ListOfMove -> State
;; given a starting state and a list of
;; moves, find the final state
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An	Application:	Simulation
;; strategy: structural decomposition on moves
(define (simulate st moves)

(cond
[(empty? moves) st]
[else 

(simulate
(next-state (first moves) st)
(rest moves)))]))
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Or	using	foldl

(define (simulate initial-state moves)
(foldl
next-state 
initial-state
moves))
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I	carefully	chose	the	order	of	the	
arguments	to	make	this	work.		If	
next-state	took	its	arguments	in	a	
different	order,	you'd	have	to	do	the	
same	kind	of	thing	we	did	for	
subtraction	above.



Summary

• You	should	now	be	able	to:
– explain	what	foldr and	foldl compute
– explain	the	difference	between	foldr and	foldl
– explain	why	they	are	called	"fold	right"	and	"fold	
left"

– use	foldl in	a	function	definition
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Next	Steps

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Problem	Set	07
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