
Foldr and	Foldl

CS	5010	Program	Design	Paradigms
Lesson	7.5

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Lesson	Outline

• Look	more	closely	at	foldr
• Introduce	foldl:	like	foldr but	"in	the	other	
direction"

• Implement	foldl using	a	context	variable
• Look	at	an	application

2

Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	
to:
– explain	what	foldr and	foldl compute
– explain	the	difference	between	foldr and	foldl
– explain	why	they	are	called	"fold	right"	and	"fold	
left"

– use	foldl in	a	function	definition

3

Foldr:	the	general	picture

4

()x1

f

x3

f

x2

f

x4

f

x5

f a

(foldr f a (list x1 ... x5))

Another	picture	of	foldr
The	textbook	says:

;; foldr : (X Y -> Y) Y ListOfX -> Y
;; (foldr f base (list x_1 ... x_n))
;; = (f x_1 ... (f x_n base))

This	may	be	clearer	if	we	write	the	combiner	in	infix:
eg (x	- y)	instead	of	(f	x	y)	:

(foldr – a (list x1 ... xn)) =
x1 – (x2 – (... – (xn – a)))

5

We	use	– instead	of	
+,	because	– is	not	
associative.		So	it	
makes	a	difference	
which	way	you	
associate
x1	– x2	– x3	– x4

What	if	we	wanted	to	associate	the	
other	way?

Instead	of	
x1 – (x2 – (... – (xn – a)))
suppose we wanted
(((a – x1) – x2) ... – xn)

6

foldr associates	
its	operator	to	
the	right

foldl will	
associate	its	
operator	to	the	
left

For	this	computation,	the	pipeline	
goes	the	other	way

7

(foldl f a (list x1 ... x5))

()x1

f

x3

f

x2

f

x4

f

x5

fa

Let's	write	the	code

;; We'll use the template:
(define (foldl f a lst)
(cond
[(empty? lst) ...]
[else (...

(first lst)
(foldl ... (rest lst)))])

8

We'll	need	to	figure	
out	what	goes	here.

What	if	lst is	empty?

• When	the	list	is	empty,	there	are	no	stages	in	
the	pipeline,	so	

(foldl f a empty) = a

9

()x1

f

x3

f

x2

f

x4

f

x5

fa

What	if	the	list	is	non-empty?

10

()x1

f

x3

f

x2

f

x4

f

x5

fa

()x3

f

x2

f

x4

f

x5

f(f x1 a)

=

So	for	a	non-empty	list

(foldl f a (cons x1 lst))
= (foldl f (f x1 a) lst)

11

Putting	this	together

(define (foldl f a lst)
(cond

[(empty? lst) a]
[else (foldl f

(f (first lst) a)
(rest lst))]))

12

Let's	do	a	computation

(foldl - 1 (list 20 10 2))
= (foldl - 19 (list 10 2)) ;20-1 = 19
= (foldl - -9 (list 2)) ;10-19 = -9
= (foldl - 11 empty) ;2-(-9) = 11
= 11

13

What's	the	contract?

14

()x1

f

x3

f

x2

f

x4

f

x5

fa

This	part	is	like	foldr:	We	can	label	all	the	
vertical	arrows	as	X's	and	all	the	horizontal	
arrows	as	Y's,	so	the	contract	becomes

(X Y -> Y) Y ListOfX -> Y

Purpose	Statement	(1)

• Textbook	description:
;; foldl : (X Y -> Y) Y ListOfX -> Y
;; (foldl f base (list x_1 ... x_n))
;; = (f x_n ... (f x_1 base))

15

Can	we	describe	this	using	an	
invariant?

• To	do	this,	let's	think	about	where	we	are	in	the	
middle	of	a	computation

• At	this	point,	we've	processed	x1	and	x2,	and	we	
are	looking	at	the	sublist (x3 ... xn)

16

(((a – x1) – x2) x3 ... – xn)

Purpose	Statement	using	invariant
GIVEN: a function f, a value a, and a sublist lst
WHERE: lst is a sublist of some larger list lst0
AND: a is the result of applying f to some starting

element a0 and the elements of lst0 that are above lst
RETURNS: the result of applying f to the starting element a0

and all the elements of lst0.

17

Here's	an	alternate	purpose	statement	
that	describes	the	situation	in
the	middle	of	the	pipeline.

You	don't	have	to	use	this	purpose	
statement;	you	can	use	the	one	from	the	
book	if	it	is	easier	for	you.

Let's	apply	this	to	subtraction
;; diff : NonEmptyListOfNumber -> Number
;; GIVEN: a nonempty list of numbers
;; RETURNS: the result of subtracting the numbers, from
;; left to right.
;; EXAMPLE:
;; (diff (list 10 5 3)) = 2

;; We'll use the data definition
;; NELON = (cons Number ListOfNumber)

18

This	was	guided	practice	
7.1

Code,	with	simple	purpose	statement

(define (diff nelst)
(diff-inner (first nelst) (rest nelst)))

;; diff-inner : Number ListOfNumber
;; RETURNS: the result of subtracting each of the numbers in lon
;; from num
(define (diff-inner num lon)

(cond
[(empty? lon) num]
[else (diff-inner

(- num (first lon)) ;; this is (f a (first lon))
;; different order of arguments
;; than foldl

(rest lon))]))

19

Code,	with	fancier	purpose	statement
(define (diff nelst)

(diff-inner (first nelst) (rest nelst)))

;; diff-inner : Number ListOfNumber
;; GIVEN: a number sofar and a sublist lon of some list lon0
;; WHERE: sofar is the result of subtracting all the numbers in
;; lon0 that are above lon.
;; RETURNS: the result of subtracting all the numbers in lon0.
(define (diff-inner sofar lon)

(cond
[(empty? lon) sofar]
[else (diff-inner

(- sofar (first lon)) ;; this is (f a (first lon))
;; different order of arguments
;; than foldl

(rest lon))]))

20

You	could	use	either	this	purpose	
statement	or	the	one	on	the	
preceding	slide.		Both	are	fine.

sofar is	a	good	
name	for	this	
argument

Or	using	foldl
(define (diff nelst)
(foldl
(lambda (x sofar) (- sofar x)) ;; foldl wants an X Y -> Y
(first nelst)
(rest nelst)))

21

sofar is	a	good	name	for	this	
argument,	because	it	describes	
where	the	value	comes	from.

Another	application:	Simulation

;; simulating a process

;; Wishlist:
;; next-state : Move State -> State

;; simulate : State ListOfMove -> State
;; given a starting state and a list of
;; moves, find the final state

22

An	Application:	Simulation
;; strategy: structural decomposition on moves
(define (simulate st moves)

(cond
[(empty? moves) st]
[else

(simulate
(next-state (first moves) st)
(rest moves)))]))

23

Or	using	foldl

(define (simulate initial-state moves)
(foldl
next-state
initial-state
moves))

24

I	carefully	chose	the	order	of	the	
arguments	to	make	this	work.		If	
next-state	took	its	arguments	in	a	
different	order,	you'd	have	to	do	the	
same	kind	of	thing	we	did	for	
subtraction	above.

Summary

• You	should	now	be	able	to:
– explain	what	foldr and	foldl compute
– explain	the	difference	between	foldr and	foldl
– explain	why	they	are	called	"fold	right"	and	"fold	
left"

– use	foldl in	a	function	definition

25

Next	Steps

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Problem	Set	07

26

