
Why	Recursive	Functions	Halt

CS	5010	Program	Design	Paradigms
Lesson	4.6

1
©	Mitchell	Wand,	2016
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction

• All	of	our	functions	so	far	always	terminated.
• But	recursive	functions	need	not	terminate!
• In	this	lesson,	we'll	study	a	property	that	
guarantees	that	a	function	always	halts.

• This	property	is	called	"having	a	halting	
measure"

• We'll	see	how	to	document	the	halting	
measure	for	your	function.

2

Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	
to:
– Identify	the	halting	measure	for	functions	that	
follow	a	template

– Document	the	halting	measure	for	such	functions

3

Remember	lon-sum
lon-sum : LON -> Number
(define (lon-sum lst)
(cond
[(empty? lst) 0]
[else (+ (first lst)

(lon-sum (rest lst)))]))

4

Watch	this	work:
(lon-sum (cons 11 (cons 22 (cons 33 empty))))
= (+ 11 (lon-sum (cons 22 (cons 33 empty))))
= (+ 11 (+ 22 (lon-sum (cons 33 empty))))
= (+ 11 (+ 22 (+ 33 (lon-sum empty))))
= (+ 11 (+ 22 (+ 33 0)))
= (+ 11 (+ 22 33))
= (+ 11 55)
= 66

5

Clearly,	this	function	will	halt	for	any	
LON	

• Why?
• Because	at	every	step	it	works	on	a	shorter	
and	shorter	list,	so	eventually	it	reaches	
empty?	and	the	function	halts.

• In	other	words,	(length	lst)	is	a	quantity	that	
decreases	at	every	recursive	call.

6

So	here's	a	hypothesis

• If	we	can	find	a	quantity	that	decreases	at	
every	recursive	call	to	our	function,	then	the	
function	always	halts.

7

Another	example:	sum

;; sum :
;; NonNegInt NonNegInt -> NonNegInt
;; strategy: use template for
;; NonNegInt on x
(define (sum x y)
(cond
[(zero? x) y]
[else (+ 1 (sum (- x 1) y))])

8

Example

(sum 3 2)
= (+ 1 (sum 2 2))
= (+ 1 (+ 1 (sum 1 2)))
= (+ 1 (+ 1 (+ 1 (sum 0 2))))
= (+ 1 (+ 1 (+ 1 2)))
= 5

9

This	one	will	also	work	for	any	non-
negative	integer	x

• At	every	recursive	call,	the	value	of	the	first	
argument	decreases,	so	eventually	it	reaches	
0.

• The	value	of	x	is	a	quantity	that	decreases	at	
every	recursive	call.

• So	this	example	is	consistent	with	our	
hypothesis.

10

Let's	look	at	another	example

;; foo : NonNegReal -> NonNegInt
(define (foo n)

(cond
[(zero? n) 0]
[else (+ 1 (foo (* n 0.1)))]))

11

This	is	a	silly	function,	so	we	won't	
write	out	the	rest	of	the	purpose	

statement.

(foo 3)
= (+ 1 (foo 0.3))
= (+ 1 (+ 1 (foo 0.03)))
= (+ 1 (+ 1 (+ 1 (foo 0.003))))
= ...

12

Oops!		The	argument	is	never	equal	to	0,	so	
the	function	never	halts.

So	we	can	refine	our	hypothesis

• If	we	can	find	a	integer-valued quantity	that	
decreases	at	every	recursive	call	to	our	
function,	then	the	function	always	halts.

• All	our	examples	are	consistent	with	this	
hypothesis.

13

Let's	try	another	example

;; sum2 :
;; NonNegInt NonNegInt -> NonNegInt
;; strategy: use template for
;; NonNegInt on x
(define (sum2 x y)
(cond
[(zero? x) y]
[else (+ 2 (sum2 (- x 2) y))])

14

What	if	we	had	used	the	
template	incorrectly,	and	

written	this	program	instead?

It	still	works	for	even	x

(sum2 4 3)
= (+ 2 (sum2 2 3))
= (+ 2 (+ 2 (sum2 0 3)))
= (+ 2 (+ 2 3))
= 7

15

But	watch	what	happens	when	x	is	odd

(sum2 3 3)
= (+ 2 (sum2 1 3))
= (+ 2 (+ 2 (sum2 -1 3)))
= (+ 2 (+ 2 (+ 2 (sum2 -3 3))))
= (+ 2 (+ 2 (+ 2 (+ 2 (sum2 -5 3)))))
= ...

16

Oops!		The	value	of	x	went	negative	
without	being	0.	This	goes	into	an	

infinite	loop!	

So	let's	refine	our	hypothesis	again

• Hypothesis:	If	we	can	find	a	non-negative,
integer-valued quantity	that	decreases	at	
every	recursive	call	to	our	function,	then	the	
function	always	halts.

• This	statement	is	actually	true.			If	the	value	of	
our	quantity	is	𝑛,	then	our	function	can't	
possibly	recur	more	than	𝑛 times:	you	can't	
decrease	the	value	of	𝑛 more	than	𝑛 times	
without	it	becoming	negative.

17

Halting	Measure

• Definition:	a	halting	measure	for	a	particular	
function	is	an	integer-valued	quantity	that	
can't	be	less	than	zero,	and	which	decreases at	
each	recursive	call	in	that	function.

• This	is	something	you	have	probably	not	seen	
before,	so	you'll	need	to	pay	careful	attention.

18

Examples

• (length	lst)	is	a	halting	measure	for	lon-sum
• the	value	of	x is	a	halting	measure	for	sum
• the	value	of	y is	a	halting	measure	for	prod
(Lesson	4.4).

19

A	function	may	have	more	than	one	
halting	measure

• The	following	quantities	are	halting	measures	for	
sum:
– the	value	of	x
– the	value	of	x+4
– the	value	of	2*x

• The	following	quantities	are	not halting	measures	
for	sum:
– the	value	of	y
– the	value	of	-2*x

• But	usually	there's	one	"obvious"	halting	
measure,	like	the	ones	on	the	preceding	slide.

20

Don't	get	confused:	"Termination	
Argument"	vs.	"Termination	

Condition"
• The	"termination	condition"	is	the	condition	
under	which	the	function	halts	immediately,	eg
"the	function	halts	when	x	reaches	0"

• The	"termination	argument"	is	an	argument	to	
show	that	the	function	always	eventually	reaches	
the	termination	condition.

• The	termination	argument	is	your	answer	to	the	
question:	"Why	is	〈the	thing	you	claim	is	the	
halting	measure〉 really	a	halting	measure?"

21

The	Halting	Measure	is	a	new	
deliverable

• We	will	ask	you	to	specify	a	halting	measure	for	every	
recursive	function	you	write.

• This	is	usually	easy,	eg:	
HALTING MEASURE: the length of lst

or	the	like.	
• When	you	follow	the	template,	it	will	almost	always	

be	a	quantity	associated	with	the	template	variable.
• The	TA	may	ask	you	to	explain	why	the	thing	you	

called	the	halting	measure	really	is	a	halting	measure	
for	your	function.

22

Summary

• At	the	end	of	this	lesson	you	should	be	able	
to:
– Identify	the	halting	measure	for	functions	that	
follow	a	template

– Document	the	halting	measure	for	such	functions

23

Next	Steps

• Study	04-XXX	in	the	Examples	file
• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	4.4++
• Go	on	to	the	next	lesson

24

GPs:	take	some	from	Lesson	
8.2,	add	some	for	lists.

