Why Recursive Functions Halt

CS 5010 Program Design Paradigms
Lesson 4.6

@ © Mitchell Wand, 2016
e 1 his work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction

All of our functions so far always terminated.
But recursive functions need not terminate!

In this lesson, we'll study a property that
guarantees that a function always halts.

This property is called "having a halting
measure”

We'll see how to document the halting
measure for your function.

Learning Objectives

e At the end of this lesson you should be able
to:

— Identify the halting measure for functions that
follow a template

— Document the halting measure for such functions

Remember lon-sum

lon-sum : LON -> Number
(define (lon-sum 1lst)
(cond
[(empty? 1st) O]
[else (+ (first 1lst)
(lon-sum (rest 1lst)))]))

Watch this work:

(lon-sum (cons 11 (cons 22 (cons 33 empty))))

11
11
11
11
11
11

(lon-sum (cons 22 (cons 33 empty))))

(+ 22
(+ 22
(+ 22
(+ 22
55)

(lon-sum (cons 33 empty))))
(+ 33 (lon-sum empty))))

(+ 33 9)))
33))

Clearly, this function will halt for any
LON

e Why?

* Because at every step it works on a shorter
and shorter list, so eventually it reaches
empty? and the function halts.

* In other words, (length Ist) is a quantity that
decreases at every recursive call.

So here's a hypothesis

* |f we can find a quantity that decreases at
every recursive call to our function, then the
function always halts.

Another example: sum

55 sum :
55 NonNegInt NonNegInt -> NonNeglnt
;5 strategy: use template for
HE NonNegInt on X

(define (sum x y)

(cond

[(zero? x) y]
[else (+ 1 (sum (- x 1) y))])

Example

(sum 3 2)

(+ 1 (sum 2 2))

(+1 (+1 (sum 1 2)))

(+1 (+1 (+1 (sum© 2))))
(+1 (+1(+12)))

5

This one will also work for any non-
negative integer x

* At every recursive call, the value of the first
argument decreases, so eventually it reaches
0.

 The value of x is a quantity that decreases at
every recursive call.

* So this example is consistent with our
hypothesis.

Let's look at another example

55 foo : NonNegReal -> NonNegInt
(define (foo n)
(cond
[(zero? n) 0]
[else (+ 1 (foo (* n ©.1)))]))

This is a silly function, so we won't
write out the rest of the purpose
statement.

11

(foo

(+
(+

3)

1 (foo 0.3))

1 (+ 1 (foo 0.03)))

1 (+1 (+1 (foo 0.003))))

Oops! The argument is never equal to 0, so
the function never halts.

12

So we can refine our hypothesis

* |f we can find a integer-valued quantity that
decreases at every recursive call to our
function, then the function always halts.

e All our examples are consistent with this
hypothesis.

13

Let's try another example

55 sum2 :
55 NonNegInt NonNegInt -> NonNeglnt

. What if we had used the
(dE'Flne (Sum2 X y) template incorrectly, and

(Cond written this program instead?

[(zero? x) y]
[else (+ 2 (sum2 (- x 2) y))])

14

It still works for even x

(sum2 4 3)

(+ 2 (sum2 2 3))

(+ 2 (+ 2 (sum2 @ 3)))
(+ 2 (+ 2 3))

7

But watch what happens when x is odd

(sum2 3 3)

= (+ 2 (sum2 1 3))

= (+ 2 (+ 2 (sum2 -1 3)))

= (+2 (+ 2 (+ 2 (sum2 -3 3))))
=(+2 (+2 (+2 (+ 2 (sum2 -5 3)))))

Oops! The value of x went negative
without being 0. This goes into an
infinite loop!

16

So let's refine our hypothesis again

 Hypothesis: If we can find a non-negative,
integer-valued quantity that decreases at
every recursive call to our function, then the
function always halts.

* This statement is actually true. If the value of
our quantity is n, then our function can't
possibly recur more than n times: you can't
decrease the value of n more than n times
without it becoming negative.

17

Halting Measure

Definition: a halting measure for a particular
function is an integer-valued quantity that
can't be less than zero, and which decreases at

each recursive call in that function.

This is something you have probably not seen
before, so you'll need to pay careful attention.

18

Examples

* (length Ist) is a halting measure for lon-sum

o t
o t
(

ne value of x is a halting measure for sum

ne value of y is a halting measure for prod

 esson 4.4).

19

A function may have more than one
halting measure

* The following quantities are halting measures for
sum:

— the value of x
— the value of x+4
— the value of 2*x
* The following quantities are not halting measures
for sum:

— the value of y
— the value of -2*x

* But usually there's one "obvious" halting
measure, like the ones on the preceding slide.

Don't get confused: "Termination
Argument” vs. "Termination
Condition"

e The "termination condition" is the condition
under which the function halts immediately, eg
"the function halts when x reaches 0"

* The "termination argument" is an argument to
show that the function always eventually reaches
the termination condition.

* The termination argument is your answer to the
question: "Why is (the thing you claim is the
halting measure) really a halting measure?"

The Halting Measure is a new
deliverable

We will ask you to specify a halting measure for every
recursive function you write.

This is usually easy, eg:
HALTING MEASURE: the length of 1st

or the like.

When you follow the template, it will almost always
be a quantity associated with the template variable.

The TA may ask you to explain why the thing you
called the halting measure really is a halting measure

for your function.

Summary

e At the end of this lesson you should be able
to:

— Identify the halting measure for functions that
follow a template

— Document the halting measure for such functions

23

Next Steps

Study 04-XXX in the Examples file
If you have questions about this lesson, ask

themon't
Do Guidec

ne Discussion Board

Practice 4.4++

Goontot

ne next lesson

GPs: take some from Lesson
8.2, add some for lists.

24

