
More	Recursive	Data	Types

CS	5010	Program	Design	Paradigms
Lesson	4.4

1
©	Mitchell	Wand,	2016
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction

• There	are	other	recursive	data	types	besides	
lists

• Programming	with	these	is	no	different:
– write	down	the	data	definition,	including	
interpretation	and	template

– Follow	the	Recipe!

2

Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	
to:
– Explain	what	makes	a	recursive	data	definition	
sensible

– Explain	how	the	Natural	Numbers	definition	works
– write	simple	programs	using	the	Natural	Numbers	
template

3

What's	interesting	about	lists?

• Our	Lists	data	definitions	are	the	first	
"interesting"	data	definitions:

• They	are	mixed	data
• They	are	recursive

4

Question:	Why	did	we	say	"data	
definitions"	instead	of	data	

definition?"
Answer:	Remember	that	we	
have	a	data	definition	ListOfX

for	each	X

What	makes	a	good	definition	for	
mixed	data?

• The	alternatives	are	mutually-exclusive
• It	is	easy	to	tell	the	alternatives	apart
• There	is	one	and	only	one	way	of	building	any	
value.

5

Example	of	a	bad	data	definition

A Blue number is one of
• an integer that is a multiple of

two
• an integer that is a multiple of

three

6

These	categories	are	not	
mutually	exclusive

Example	of	a	bad	data	definition

A Green number is one of
• an integer that is a product of

exactly two prime numbers
• any other integer

7

These	categories	are	mutually	
exclusive,	but	it	is	complicated	

to	distinguish	them

Example	of	a	bad	data	definition

A Purple number is one of
• the number 1
• a number of the form (+ n1 n2)

8

Just	knowing	the	value	of	a	purple	
number,	like	56,	doesn't	tell	you	how	it	
was	constructed	as	(+	n1	n2)	.		There	are	
many	choices	of	n1 and	n2 that	would	

build	56.

The	Natural	Numbers

• The	natural	numbers	are	the	counting	
numbers:

0,	1,	2,	3,	4,	...	
• This	is	just	another	name	for	the	non-negative	
integers

9

A	data	definition	for	the	natural	
numbers

;; A Natural Number (Nat) is one of
;; -- 0
;; -- (add1 Nat)

10

Here	we	use	the	Racket	function	
add1,	which	adds	1	to	its	

argument.		We'll	also	use	sub1,	
which	subtracts	1	from	its	

argument.

Examples

0
1 (because 1 = (add1 0))
2 (because 2 = (add1 1))
3 (because 3 = (add1 2))
4 (because 4 = (add1 3))
Etc...

11

Is	this	a	good	data	definition?

• Are	the	alternatives	mutually	exclusive?

• Is	it	easy	to	tell	the	alternatives	apart?

12

Answer:	yes

Answer:	yes,	with	
the	predicate	zero?

• Is	there	one	and	only	one	way	of	building	any	
value?

• Answer:	Yes.		There's	only	one	way	to	build	
the	number	𝑛 :

(add1 (add1 (add1 (add1 ... 0))))

Is	this	a	good	data	definition?	(2)

13

𝑛 times

Is	this	a	good	data	definition?	(3)

• If	we	have	a	natural	number	x of	the	form	
(add1	y), there's	only	one	possible	value	of	y.		
Can	we	find	it?

• Answer:		sure.		If	x =	(add1	y),	then	y =	(sub1	
x).

• So	add1 is	like	a	constructor,	and	sub1 is	like	
an	observer.

• This	leads	us	to	a	template:

14

Template

;; nat-fn : Nat -> ??
(define (nat-fn n)
(cond
[(zero? n) ...]
[else (... n (nat-fn (sub1 n)))]))

15

double

;; double : Nat -> Nat
;; strategy: use template for
;; Nat on n
(define (double n)

(cond
[(zero? n) 0]
[else (+ 2 (double (sub1 n)))]))

16

sum

;; sum : Nat Nat -> Nat
;; strategy: use template for
;; Nat on x
(define (sum x y)
(cond

[(zero? x) y]
[else (add1 (sum (sub1 x) y))]))

17

Example

(sum 3 2)
= (add1 (sum 2 2))
= (add1 (add1 (sum 1 2)))
= (add1 (add1 (add1 (sum 0 2))))
= (add1 (add1 (add1 2)))
= 5

18

product

;; prod : Nat Nat -> Nat
;; strategy: use template for
;; Nat on y
(define (prod x y)

(cond
[(zero? y) 0]
[else

(sum x (prod x (sub1 y)))]))

19

Example

(prod 2 3)
= (sum 2 (prod 2 2))
= (sum 2 (sum 2 (prod 2 1)))
= (sum 2 (sum 2 (sum 2 (prod 2 0))))
= (+ 2 (+ 2 (+ 2 0)))
= 6

20

Summary

• At	the	end	of	this	lesson	you	should	be	able	
to:
– write	down	the	definition	for	non-negative	
integers	as	a	data	type

– use	the	template	to	write	simple	functions	on	the	
non-negative	integers	and	other	simple	recursive	
data	types.

• The	Guided	Practices	will	give	you	some	
exercise	in	doing	this.

21

Next	Steps

• Study	04-3-nats.rkt	in	the	Examples	file
• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	4.4
• Go	on	to	the	next	lesson

22

