
Testing

CS	5010	Program	Design	Paradigms
Lesson	2.4

1
©	Mitchell	Wand,	2012-2016
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Outline

• What	do	we	test?
• How	do	we	test	them?
• How	do	we	choose	and	write	test	cases?
• How	do	we	go	about	debugging	using	tests?

2

Learning	Objectives

• At	the	end	of	this	lesson,	the	student	should	
be	able	to:
– examine	a	test	and	see	what	it	is	testing	for
– use	the	concept	of	equivalence	classes	to	get	
100%	expression	coverage

– use	the	rackunit framework	to	write	test	suites	for	
simple	programming	problems

– use	the	rackunit framework	to	help	in	debugging	
simple	programs

3

What	do	we	want	to	test?

• Lots	of	things	we	could	want	to	test,	but	for	
now	we’ll	keep	it	simple:

• We	want	to	make	sure	the	answers	from	our	
functions	are	correct.

• But	what	makes	an	answer	correct?
• And	how	do	you	convince	a	reader	that	your	
tests	are	testing	the	right	thing?

4

Qualification	Testing

• Does	the	program	provide	the	functions	that	
are	specified	in	the	problem?

• Do	they	take	the	right	number	and	type	of	
arguments?		Do	they	return	the	right	type	of	
result?
If	they	don’t,	then	the	program	is	not	ready	for	
further	testing...

5

Acceptance	Testing

• The	requirements	probably	give	some	
examples.		Be	sure	to	test	them!

• Sometimes	the	requirements	are	more	
complicated,	so	you'll	have	to	make	up	
examples	to	check	the	requirements.

• This	is	our	primary	focus

6

Mechanics	of	Testing
• We	will	give	you	a	file	called	extras.rkt that	you	should	
put	in	the	folder	with	your	work.

• Near	the	top	of	your	file,	write
(require rackunit)
(require "extras.rkt")
to	load	our	testing	framework.
• Tests	live	in	the	file	with	the	code	
• That	way	they	get	run	every	time	the	code	is	loaded
– This	accomplishes	regression	testing.

• Wrap	your	tests	in	(begin-for-test)
– that	way	you	can	put	the	tests	anywhere	in	your	file,	and	
they	will	be	run	at	the	end	of	the	file

7

The	simplest	test	cases

• Compute	the	right	answer	by	hand,	and	make	
up	test	cases	to	match

(begin-for-test
(check-equal? (f2c 32) 0
"32 Fahrenheit was not 0 Celsius")

(check-equal? (f2c 212) 100
"212 Fahrenheit was not 100 Celsius"))

8

This	may	not	be	enough

• Did	I	do	the	hand-computation	right?
– If	you’re	lucky,	the	problem	set	said	what	the	
answer	should	be.

– Otherwise,	how	does	the	reader	know	I	didn’t	just	
take	the	result	of	my	function	and	paste	it	into	the	
test?

• Maybe	there’s	more	than	one	correct	answer!

9

Property	Testing

• Test	a	property of	the	answer
• Sometimes	all	you	care	about	is	that	the	
answer	has	some	property

• There	could	be	more	than	one	acceptable	
answer.

• Maybe	the	answer	is	something	really	
complicated,	so	check-equal?	won’t	do	the	
job,	and	the	best	we	can	do	is	check	to	see	
whether	the	answer	is	“good	enough.”

10

Example	of	Property	Testing
;; zero-of-quadratic? : Real^4 -> Boolean
;; RETURNS: whether abs(ax^2 + bx + c) < .01
(define (zero-of-quadratic? a b c x)
(< (magnitude

(+ (* a x x)
(* b x)
c))

.01))

(define (quadratic-solution1 a b c) ...)
(define (quadratic-solution2 a b c) ...)

(begin-for-test
(check-true (zero-of-quadratic? 1 0 4 (quadratic-solution1 1 0 4)))
(check-true (zero-of-quadratic? 1 0 4 (quadratic-solution2 1 0 4)))
(check-true (zero-of-quadratic? 1 0 1 (quadratic-solution1 1 0 1)))
(check-true (zero-of-quadratic? 1 0 1 (quadratic-solution2 1 0 1)))
(check-true (zero-of-quadratic? 13 58 6 (quadratic-solution1 13 58 6))))

11

I	didn’t	have	to	find	the	
solution	to	these	examples	by	
hand	(especially	the	last	one!)
I	don’t	care	what	the	solutions	
are.		I	only	care	that	they	solve	
the	given	equations.

Test	Coverage

• How	much	of	the	possible	behaviors	have	we	
tested?

• Want	every	line	in	the	program	exercised.		
This	is	called	100%	expression	coverage.

• This	is	our	minimum testing	requirement.
• But	this	doesn’t	necessarily	test	all	the	desired	
behaviors	of	our	program.

• To	get	a	better	handle	on	this,	we	introduce	
the	idea	of	equivalence	partitioning.

12

Equivalence	Partitioning
• Possible	arguments	to	your	function	typically	fall	
into	classes	for	which	the	program	yields	similar	
results.

• Example:	f2c	had	only	1	partition.
• Example:	ball-after-mouse	depends	on
– Which	mouse	event	we’re	dealing	with
– Whether	the	mouse	event	is	inside	or	outside	the	ball
– Whether	the	ball	is	selected

• So	we	need	3	x	2	x	2	=	12	tests	to	cover	all	these	
combinations.

13

Equivalence	Partitioning

14

Regions	of	similar	behavior

A B

If	the	program	works	for	input	A,	it	will	probably	work	for	input	B

Choosing	test	cases

• The	first	step	in	choosing	test	cases	is	to	divide	
your	program	into	equivalence	partitions.

• Pick	some	input	and	output	values	for	each	
partition.		Give	mnemonic	names	to	each	of	
them.		You	can	put	these	definitions	with	your	
data	definitions,	so	you	can	use	the	names	in	
your	examples.

• Then	write	your	tests	using	the	mnemonic	
names.

15

Testing	ball-after-mouse

• For	ball-after-mouse,	we	decided	there	were	
12	partitions:	3	mouse	events,	2	points	(inside	
or	outside	the	ball),	and	2	balls	(selected	or	
unselected).

• So	we	create	two	balls	at	position	(20,30),	
with	radius	10,	one	unselected	and	one	
selected,	and	define	two	points,	one	inside	
the	ball	and	one	outside.

16

Example	(1)
;; two balls at (20,30), one unselected and one selected
(define ball-unselected (make-ball 20 30 10 false))
(define ball-selected (make-ball 20 30 10 true))

;; (22,28) is inside the ball at (20,30)
(define point-inside-x 22)
(define point-inside-y 28)

;; (31,19) is outside the ball at (20,30)
(define point-outside-x 31) ;; 20+10 = 30, so 31 is outside
(define point-outside-y 19) ;; 30-10 = 20, so 19 is outside

17

The	names	of	these	values	must	be	
descriptive.		Calling	them	ball-1
and	ball-2 is	not	acceptable.

Example	(2)
;; next we make two balls, one moved to the inside point
;; and one moved to the outside point.

;; When a ball is moved, it will stay selected, so we make
;; selected? true for both of these.

(define ball-moved-to-point-inside
(make-ball point-inside-x point-inside-y 10 true))

(define ball-moved-to-point-outside
(make-ball point-outside-x point-outside-y 10 true))

18

Example
(check-equal?

(ball-after-mouse ball-unselected point-inside-x point-inside-y "button-down")
ball-selected
"button-down inside the ball failed to select it")

(check-equal?
(ball-after-mouse ball-unselected point-outside-x point-outside-y "button-down")
ball-unselected
"button-down outside the ball did not leave it unchanged")

19

• check-equal?	takes	3	arguments:		the	expression	to	be	tested,	the	value	we	
believe	is	the	correct	answer,	and	an	optional	string	that	is	printed	if	the	
test	fails.

• Supply	an	informative	error	message	if	you	can.		An	uninformative	error	
message,	like	“wrong	answer”	is	worse	than	no	message	at	all.

Testing	Pitfalls

• DON’T	just	paste	in	the	actual	results	of	your	
function.		

• Some	functions	may	have	more	than	one	
correct	answer;	
– your	tests	should	accept	any correct	answer,	not	
just	the	one	your	solution	happens	to	produce

– use	property	testing	to	handle	this	situation.

20

Testing	Pitfalls	(2)

• Avoid	coincidences	in	your	tests,	just	as	you	
did	in	your	examples

• Bad:
(check-equal?
(book-profit-margin
(make-book "Little Lisper" "Friedman" 2.00 4.00))
2.00)

• Better:
(check-equal?
(book-profit-margin
(make-book "Little Lisper" "Friedman" 2.00 5.00))
3.00)

21

Video:	ball-after-mouse-with-tests	

22

Note:		this	video	uses	an	older	version	of	our	testing	technology.		The	
details	are	a	little	different,	but	the	principles	are	the	same.

YouTube	link

• https://www.youtube.com/watch?v=Sm_RchgWAu0

Using	Tests

• Run	your	program	with	its	tests
• Debug	so	that	all	your	tests	pass
• If	you	didn't	achieve	100%	expression	
coverage,	go	back	and	add	more	tests.
– Just	because	your	tests	pass	with	100%	coverage	
doesn’t	mean	your	program	is	right!

– But	100%	expression	coverage	is	our	standard	for	
this	course.

– Your	workplace	may	have	different	standards.	

23

Tests	Written?

• Once	you’ve	written	the	deliverables	for	the	
first	five	steps	of	the	design	recipe,	it’s	time	to	
run	the	program.	(Program	Review	will	come	
later)

• What	could	possibly	go	wrong?
• Let’s	make	a	short	list...

24

What	could	go	wrong?

• Program	fails	to	load
– unbalanced	parens?		The	unmatched	paren is	
highlighted	in	the	interaction	window.

– missing	function?
• forgot	to	write	definition
• misspelled	function	name
• forgot	to	require the	library	module
• misspelled	library	name

– the	error	message	Racket	gives	you	in	this	case	is	especially	
scary.	But	don't	be	frightened.		It	just	means	that	it	couldn't	
find	the	library	you	told	it	to	look	for.

25

What	could	go	wrong?	(2)

• You	could	get	an	error	calling	a	Racket	
primitive.
– eg:	"can't	apply	string=?	to	1"
– this	may	be	something	simple,	like	the	wrong	test,
– or	it	may	be	more	subtle-- "how	did	I	manage	to	
pass	a	1	to	string=?"

–Write	more	tests	to	see	how	you	got	to	this.

26

What	could	go	wrong	(3)
• A	test	fails

1. Identify	the	test	that	failed
• Racket	will	highlight	the	test	that	failed.		Having	an	informative	error	

message	will	also	help	you	identify	the	test
2. Check	the	test:	is	the	answer	that	it	asked	for	really	the	right	

one?
• If	not,	fix	the	test
• DON’T	just	paste	in	the	actual	results	of	your	function.		

3. If	the	test	is	right,	play	detective	by	adding	new	tests.	
• Add	a	test	to	see	if	your	function	called	the	right	helper?

– yes:	the	helper	is	the	one	giving	the	wrong	answer.		Test	the	helper	and	fix	it.
– no:	your	original	function	didn’t	call	the	helper	as	it	should.		

» The	call	to	the	helper	is	probably	guarded	by	a	predicate.		Test	the	
predicate	to	see	if	it	is	returning	the	right	value.	

» Did	it	pass	the	right	arguments?		Write	some	more	tests	to	see.

27

Debugging	by	Testing:	Example
Code:
(define (ball-after-mouse b mx my mev)

(cond
[(mouse=? mev "button-down")
(ball-after-button-down b mx my)]

[(mouse=? mev "drag") (ball-after-drag b mx my)]
[(mouse=? mev "button-up") (ball-after-button-up b mx my)]
[else b]))

Failing	Test:	
(check-equal?

(ball-after-mouse
ball-unselected point-inside-x point-inside-y
"button-down")

ball-selected)

28

Imagine	we	have	this	function	
definition	and	this	failing	test.

This	test	checks	the	combination of	
ball-after-mouse and	ball-after-
button-down.		If	it	fails,	either	
procedure	might	be	at	fault.	

Debugging	by	Testing	(2)
(check-equal?

(ball-after-mouse
ball-unselected
point-inside-x point-inside-y

"button-down")
(ball-after-button-down

ball-unselected
point-inside-x point-inside-y))

Test	fails:	problem	is	in	ball-after-
mouse
Test	succeeds:	problem	is	in	ball-after-
button-down

29

On	a	button-down,	we	were	
supposed	to	call	ball-after-button-
down.		So	let’s	create	a	test	to	see	if	
that	happened.

We	know	that	ball-after-button-down was	
supposed	to	be	called,	so	these	two	
expressions	should	return	the	same	thing,	
even	if	it's	the	wrong	thing.		So	if	this	test	
fails,	we	know	that	ball-after-mouse didn't	
call	ball-after-button-down	correctly.		If	
the	test	succeeds,	we	know	that	ball-
after-button-down was	called,	but	it	is	
returning	the	wrong	thing,	because	the	
test	on	the	previous	slide	is	still	failing.		

Tracking	down	your	bug
(define (ball-after-button-down b mx my)
(if (inside-ball? mx my b)
(ball-make-selected b)
b))

(check-equal?
(ball-after-button-down
ball-unselected
point-inside-x point-inside-y)

(ball-make-selected ball-unselected))

Test	succeeds:	problem	is	in	ball-make-selected
Test	fails:	problem	is	in	inside-ball?

30

Let’s	imagine	we’ve	identified	ball-after-
button-down as	the	likely	culprit.		We	could	
write	another	test	to	see	whether	ball-after-
button-down is	calling	ball-make-selected
correctly.

Keep	your	bug	from	re-appearing

• Leave	the	extra	tests	in	your	file
• That	way	if	your	bug	reappears	you	will	have	
the	detective	work	all	set	up.

31

Disclaimer

• Our	presentation	has	been	specific	to	Racket	
and	to	this	course,	but	the	ideas	and	
techniques	are	adaptable	to	other	settings	
and	other	languages.

• Your	employer	may	have	different	conventions	
for	managing	tests.		

• If	your	employer	does	not	have	conventions	
for	systematic	testing,	you	should	urge	him	(or	
her)	to	introduce	one.

32

Learning	Objectives

• At	the	end	of	this	lesson,	the	student	should	
be	able	to:
– examine	a	test	and	see	what	it	is	testing	for
– use	the	concept	of	equivalence	classes	to	get	
100%	expression	coverage

– use	the	rackunit framework	to	write	test	suites	for	
simple	programming	problems

– use	the	rackunit framework	to	help	in	debugging	
simple	programs

33

Next	Steps

• Study	02-6-test-quadratics.rkt	and	02-7-ball-
after-mouse-with-tests.rkt	.

• If	you	have	questions	or	comments	about	this	
lesson,	post	them	on	the	discussion	board.

• Go	on	to	the	next	lesson.

34

