
Examining	Two	Pieces	of	Data

CS	5010	Program	Design	Paradigms
Lesson	2.3

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

You	can	only	use	one	template	at	a	
time.

• If	you	need	to	do	examine	more	than	one	
value,	examine	one	argument	first,	using	its	
template,	and	pass	the	results	on	to	a	suitable	
help	function	or	functions.

2

There's	one	small	exception	
to	this;	see	slides	10-11	
below.		

Examining	multiple	values:	example	#1

3YouTube	link

Reminder:	“structural	decomposition”	(in	
the	video)	is	just	a	fancier	word	for	what	
we’re	calling	“using	the	template”.

• https://www.youtube.com/watch?v=6XYpgHiXkA0

• Let's	consider	ball-after-mouse:
• We	are	modelling	the	behavior	of	a	ball	in	a	
simulation.		

• The	ball	responds	to	mouse	events.		To	model	
this	response,	we	clearly	have	to	look	both	at	
the	ball	and	the	mouse	event.

• Let's	look	at	the	data	definition	and	the	
functions.

Examining	more	than	one	value:	
example	#2

4

• Contract	and	Purpose	Statement:
;; ball-after-mouse :
;; Ball Integer Integer MouseEvent -> Ball
;; GIVEN: a ball, a location and a mouse event
;; RETURNS: the ball after the given mouse event at
;; the given location.

• Remember,	when	we	say	"a	ball",	we	mean	
“the	state	of	the	ball”:		this	function	takes	a	
ball	state	and	returns	another	ball	state.

• This	is	sometimes	called	“the	successor-value	
pattern.”

Structural	Decomposition	on	more	
than	one	value:	example	#2

5

Data	Definition:	Ball
(define-struct ball (x y radius selected?))

;; A Ball is a (make-ball Integer Integer Real Boolean)
;; x and y are the coordinates of the center of the ball,
;; in pixels, relative to the origin of the scene.
;; radius is the radius of the ball, in pixels
;; selected? is true iff the ball has been selected for dragging.

;; TEMPLATE:
;; (define (ball-fn b)
;; (...
;; (ball-x b) (ball-y b) (ball-radius b) (ball-selected? b)))

We	follow	the	design	recipe:		we	start	with	the	
data	definitions.

ball-after-mouse
;; ball-after-mouse :
;; Ball Integer Integer MouseEvent -> Ball
;; GIVEN: a ball, a location and a mouse event
;; RETURNS: the ball after the given mouse event at
;; the given location.
;; STRATEGY: Cases on mev
(define (ball-after-mouse b mx my mev)
(cond
[(mouse=? mev "button-down")
(ball-after-button-down b mx my)]
[(mouse=? mev "drag")
(ball-after-drag b mx my)]
[(mouse=? mev "button-up")
(ball-after-button-up b mx my)]
[else b])) We	now	have	a	wishlist of	

functions	to	design:
1. ball-after-button-down
2. ball-after-drag
3. ball-after-button-up

We	first	do	cases	on	the	mouse	
event.	The	data	is	handed	off	to	
one	of	several	help	functions.		
Each	help	function	will	decompose	
the	compound	data.

Let’s	draw	a	picture

8

ball-after-mouse

ball-after-dragball-after-button-
up

ball-after-button-
down

This	tree	shows	the	organization	of	these	functions.			The	arrows	go	from	
the	called	function	to	the	caller.		Let’s	explore	ball-after-drag

ball-after-drag

;; ball-after-drag
;; : Ball Integer Integer -> Ball
;; GIVEN: a ball and a location
;; RETURNS: the ball after a drag event at the
;; given location.
;; STRATEGY: Use template for Ball on b.
(define (ball-after-drag b x y)

(if (ball-selected? b)
(ball-moved-to b x y)
b)) This	moves	the	ball	so	its	center	is	at	the	

mouse	point.		That’s	probably	not	what	
you	want	in	a	real	application.		You	
probably	want	something	that	we	call	
“smooth	drag”,	which	we’ll	learn	about	in	
a	problem	set	coming	up	soon.

ball-moved-to

;; ball-moved-to : Ball Integer Integer -> Ball
;; GIVEN: a ball and a set of coordinates
;; RETURNS: a ball like the given one, except
;; that it has been moved to the given
;; coordinates.
;; STRATEGY: use template for Ball on b

(define (ball-moved-to b x y)
(make-ball x y

(ball-radius b)
(ball-selected? b)))

So	now	we	need	to	write	ball-moved-to.	
It’s	also	going	to	look	at	the	data	inside	
the	ball,	using	the	Ball	template.

A	bigger	portion	of	the	call	tree

11

ball-after-mouse

ball-after-dragball-after-button-
up

ball-after-button-
down

ball-moved-to

Will	need	to	fill	in	more	
functions	here

An	inferior	version	of	ball-after-drag

;; ball-after-drag
;; : Ball Integer Integer -> Ball
;; GIVEN: a ball and a location
;; RETURNS: the ball after a drag event at the
;; given location.
;; STRATEGY: Use template for Ball on b

(define (ball-after-drag b x y)
(if (ball-selected? b)

(make-ball x y
(ball-radius b)
(ball-selected? b)))

b))

This	version	is	not	as	good	as	
the	preceding	one,	because	it	
does	two	tasks:		it	decides	
WHEN	to	move	the	ball,	and	it	
also	figures	out	HOW	to	move	
the	ball.

Exception

• You	can	use	the	template	for	more	than	one	
compound	if	you	really	need	to.

13

Example:	balls-collide.rkt
;; balls-intersect? : Ball Ball -> Boolean
;; GIVEN: two balls
;; ANSWERS: do the balls intersect?
;; STRATEGY: Use template for Ball on b1 and b2.

(define (balls-intersect? b1 b2)
(circles-intersect?

(ball-x b1) (ball-y b1) (ball-radius b1)
(ball-x b2) (ball-y b2) (ball-radius b2)))

14

This	is	OK,	because	trying	to	take	
the	balls	apart	in	separate	functions	
just	leads	to	awkward	code.

;; circles-intersect? : Real^3 Real^3 -> Boolean
;; GIVEN: two positions and radii
;; ANSWERS: Would two circles with the given
;; positions and radii intersect?
;; STRATEGY: Function Composition
(define (circles-intersect? x1 y1 r1 x2 y2 r2)
(<=
(+
(sqr (- x1 x2))
(sqr (- y1 y2)))

(sqr (+ r1 r2))))

circles-intersect?

15

circles-intersect?	knows	about	
geometry.		It	doesn't	know	
about	balls:	eg it	doesn't	know	
the	field	names	of	Ball or	
about	ball-selected?	.

If	we	changed	the	representation	of	balls,	to	
add	color,	text,	or	to	change	the	names	of	the	
fields,	circles-intersect?	wouldn't	need	to	
change.

If	you	didn't	break	up	balls-
intersect?	with	a	help	
function	like	this,	you	would	
very	likely	be	penalized	for	
"needs	help	function"

Writing	good	definitions

• If	your	code	is	ugly,	try	decomposing	things	in	
the	other	order

• Remember:	Keep	it	short!
• If	you	have	complicated	junk	in	your	function,	you	must	

have	put	it	there	for	a	reason.		Turn	it	into	a	separate	
function	so	you	can	explain	it	and	test	it.

• If	your	function	is	long	and	unruly,	it	probably	means	you	
are	trying	to	do	too	much	in	one	function.		Break	up	your	
function	into	separate	pieces	and	use	“Combine	Simpler	
Functions.”

16

Summary

• We’ve	now	seen	three	Design	Strategies:
– Combine	Simpler	Functions

• Combine	simpler	functions	in	series	or	pipeline
• Use	with	any	kind	of	data

– Use	Template
• Used	for	enumeration	,	compound,	or	mixed	data
• Template	gives	sketch	of	function
• Our	most	important	tool

– Cases
• For	when	you	need	to	divide	data	into	cases,	but	the	
template	doesn’t	fit.

Remember:
The	shape	of	the	data	determines	

the	shape	of	the	program.

17

Next	Steps

• Study	the	files	
– 02-3-traffic-light-with-timer.rkt	
– 02-4-ball-after-mouse.rkt	
– 02-5-balls-collide.rkt
in	the	Examples	folder.
– Especially	look	at	the	tests.		Observe	how	the	unused	
code	shows	up	in	orange	or	black.

• If	you	have	questions	or	comments	about	this	
lesson,	post	them	on	the	discussion	board.

• Go	on	to	the	next	lesson.
18

