Binary Search

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 8.2

z © Mitchell Wand, 2012-2017
rarm This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



http://creativecommons.org/licenses/by-nc/4.0/

Introduction

e Binary search is a classic example that
illustrates general recursion

 We will look at a function for binary search




Things to notice about this case study

e Use of invariants to make sure that code is
correct

e Use of halting measure to guarantee
termination
— Justification relies on the invariant (!)

e Use of Java illustrates that our tools work in
other languages

* [terative loop illustrates how our tools work in
imperative code.




Learning Objectives

e At the end of this lesson you should be able
to:

— explain what binary search is and when it is
appropriate

— explain how the standard binary search works,
and how it fits into the framework of general
recursion, invariants, and halting functions

— write variations on a binary search function




Binary Search

e Given an array A[0:N] of non-decreasing
integer values and a target tgt, find an i such
that A[i] = tgt, or else report not found.




We will use Java arrays

In Java, we declare an array variable as int[] A

The length of the array is written as A.length, and
the valid indices into such an array go from O to
A.length-1.

(An array can be empty, with A.length = 0). For
binary search, we want A to be non-decreasing, that
IS:

(for all i,j)((0 <= i <=j <= A.length) = A[i] <= A[j])

For the rest of this case study, when we say “A is non-
decreasing,” this is what we mean.




A picture of a non-decreasing array

(for all i,j)((0 <=i <= j <= A.length) = A[i] <= A[j])

]

0 1 j A.length

A[i] <= A[]]

Pictures like this turn out to be very useful. Notice that
this picture tells us that the indices into the array range
from O to A.length -1




Our Purpose Statement

GIVEN: a non-decreasing array of ints
A and a target 'tgt’

RETURNS: a number k such that
@ <= k < A.length and f(k) = tgt

if there is such a k, otherwise
returns -1



Let's do the obvious generalization

* Instead of searching from O to A.length-1, we
can search an arbitrary range in the array.

e We don’t want to lose any solutions, so we
need to make sure that if tgt exists anywhere
in the array, it exists in [lo,hi-1].




Purpose Statement for the generalized
function

GIVEN: two integers and hi, a non-decreasing
array of ints A, and a target tgt

WHERE: O <= lo <= hi <= A.length

AND (forall j)(O0 <= j < ==> A[j] < tgt)
AND (forall j)(hi <= j < A.length ==

RETURNS: a number k such that <= k <
= tgt if there is such a k, otherwise ~1.

Make sure that there are
no occurrences of tgt in
the array outside of [lo,h-1]

I’'ve highlighted the
occurrences of the new
arguments



This invariant divides the array into
three regions:

e 0 <=j<lo where A[j] < tgt
e lo<=j<hi where we don’t know
anything

e hi<=j<A.length where A[j] > tgt

11




A picture of our invariant

I’'m writing x here,

instead of tgt to
save space, sorry

A[1<x

???

A[j]>x

| |

%) 1o

Notice that the arrows point just

to the right of the boundary.

This tells us which region A[lo]
and A[hi] belong to. Similarly,

the 0 and the A.length are just to

the right of the boundary.

hi A.length

Drawing the arrows just to
the right or just to the left
of the boundary prevents

many off-by-one errors.

12




Now we can write the main method

static int binsearch_recursive (int[]A, int tgt) {

//
//
//
//
//

//
//

GIVEN: two integers and hi, a non-decreasing
array of ints A, and a target tgt

WHERE: © <= lo <= hi <= A.length

AND (forall j)(©@ <= j < ==> A[j] < tgt)

AND (forall j)(hi <= j < A.length ==> A[j] > tgt)

RETURNS: a number k such that <= k < and f(k)
= tgt if there is such a k, otherwise -1.

return recursive_loop (0, A.length, A, tgt);




The invariant when recursive_loop is
called

2?7

1o

1l
Y

hi = A.length

The unknown region is the entire
array; the other regions are empty.

14




What are the easy cases for
recursive loop?

* if lo=hi, the search range [lo,hi-1] is empty, so
the answer must be -1

e Otherwise we will have to work harder.

A[J]<x A[j]>x

The “unknown”

0 lo region is empty!

hi

A.length

15




What if the search range is larger?

e Insight of binary search: divide it in half.

e At this point we know that lo < hi.

e Choose a midpoint mid in [lo,hi-1] and
compare A[mid] to tgt.

— mid doesn't have to be close to the center— any
value in [lo,hi-1] will lead to a correct program

— but choosing mid to be near the center means
that the search space is divided in half every time,
so you'll only need about log,(hi-lo) steps.




What are the cases?

e Case 1: A(mid) = tgt
— then mid is our desired k.
— Done!

17




What are the cases?

e Case 2: A(mid) < tgt

— so we can rule out mid, and all values less than
mid (because if j < mid, then A[j] £ A[mid] < tgt).

— So the answer k, if it exists, is in [mid+1, hi-1]

— So set lo to mid+1, leave hi unchanged

o A[ljl«x |~ }<x r A[j]>x
’ ‘ The
_ remaining
@ Allthese must 10 mid b1 ynknown A.length

also be < x

region "




What are the cases?

e Case 3: A[mid] > tgt

— so we can rule out mid and all values greater than
mid, because if mid < j, then tgt < A[mid] <= A[j].

— So the answer k, if it exists, is in [lo,mid-1]

— So leave lo unchanged, and set hi to mid .

%)

A[j]<x /?,? !>x

\\

A[]]>x

|

%)

]

The remaining
unknown region

|

lo mid hi Allthese A jength

must also

be > x v




As code:

static int recursive_loop (int lo, int hi, int[] A, int tgt) {
if (lo == hi) { // the search area is empty
return -1;
}
else { /* do nothing */}
// choose an element in [lo,hi) .
int mid = (lo + hi) / 2;
if (A[mid] == tgt) { // we have found the target
return mid;
}
else if (A[mid] < tgt) {
// the target can't be to the left of mid, so search right half
return recursive_loop (mid+1, hi, A, tgt);

}

else {
// otherwise the target can't be to the right of mid, so
// search left half.
return recursive_loop (lo, mid, A, tgt);

}

20



Let’s watch this work

magine A is an array with Afi] =i*2 foriin
0,40).

et’s find an element of A that contains 49.

21




Watch this work

(recursive_loop @ 4@ A 49)
= (recursive_loop © 20 A 49)

= (recursive _loop 0 10 A 49)mw=m
(recursive_loop 6 10 A 49)

(recursive _loop 6 8 A 49)

7




What's the halting measure?

 Proposed halting measure: hi-lo
— (the size of the search region)

e Justification:

— Since the invariant says that lo <= hi, we are
guaranteed that hi-lo is a non-negative integer

— Must check to see that hi-lo decreases on every
recursive call.

— At the first recursive call, lo increases (since lo <= mid
< mid+1) and hi stays the same.

— At the second recursive call, lo stays the same but hi
decreases (mid will always be less than hi because
integer quotient rounds down).




Doing it with a loop

e The calculation we showed above looks like the
trace of a loop!

(recursive_loop 040 A 49)
= (recursive_loop 0 20 A 49)
= (recursive_loop 0 10 A 49)
= (recursive_loop 6 10 A 49)
= (recursive_loop 6 8 A 49)
=7

e So let’s write a loop that does the same thing.

24




We want the loop trace to look like
this

looptop: lo=0 hi=40 tgt=49
looptop: lo=0 hi=20 tgt=49

looptop: lo=0 hi=10 tgt=49mid=10
looptop: lo=6 hi=10 tgt=49mid=5
id=8

looptop: lo=6 hi=8 tgt=49 "

loopexit: return 7 a7




In this case, we can rewrite the
recursion as a loop

Instead of saying
return recursive _loop (..., ..., A, tgt);

we say

lo = ...
hi = ...

and go to the top of the loop.

26




The Method Definition (1)

static int binsearch_iterative (int[] A, int tgt) {

// GIVEN: An array A of integers and an integer target 'tgt’
// WHERE: A is non-decreasing

// RETURNS: a number k such that

// 0 <= k < A.length

// and A[k] = tgt

// if there is such a k, otherwise returns -1

int lo = 0;
int hi = A.length;

// INVARIANT:

// @ <= lo <= hi <= A.length

// AND  (forall j)(@ <= j < lo ==> A[j] < tgt)
// AND  (forall j)(hi <= j < A.length ==> A[]j] > tgt)

// Note that lo = @ and hi = A.length makes the invariant
// true, since in both cases there is no such j.

// HALTING MEASURE: hi-lo
// JUSTIFICATION: Same as above.




The Method Definition (2)

while (lo < hi) { // the search area is non-empty
// choose an element in [lo,hi) .
int mid = (lo + hi) / 2;
if (A[mid] == tgt) {
// we have found the target
return mid;
}
else if (A[mid] < tgt) {
// the target can't be to the left of mid, so search right half.
lo = mid+1;
}
// otherwise the target can't be to the right of mid, so search left half.
else
hi = mid;

}

// the search area is empty
return -1;

28




Summary

 You should now be able to:

— explain what binary search is and when it is
appropriate

— explain how the standard binary search works,
and how it fits into the framework of general
recursion, invariants, and halting functions

— give the halting measure and explain the
termination argument for binary search

— write variations on a binary search function

29




Next Steps

Study the file 08-2-binary-search.java in the

Examples folder

If you have questions about this lesson, ask

themon't
Do Guided

ne Discussion Board
Practice 8.3

Goontot

ne next lesson

30




	Binary Search
	Introduction
	Things to notice about this case study
	Learning Objectives
	Binary Search
	We will use Java arrays
	A picture of a non-decreasing array
	Our Purpose Statement
	Let's do the obvious generalization
	Purpose Statement for the generalized function
	This invariant divides the array into three regions:
	A picture of our invariant
	Now we can write the main method
	The invariant when recursive_loop is called
	What are the easy cases for recursive_loop?
	What if the search range is larger?
	What are the cases?
	What are the cases?
	What are the cases?
	As code:
	Let’s watch this work
	Watch this work
	What's the halting measure?
	Doing it with a loop
	We want the loop trace to look like this
	In this case, we can rewrite the recursion as a loop
	The Method Definition (1)
	The Method Definition (2)
	Summary
	Next Steps

