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Module Introduction (1)

• This module covers two topics
• First, we talk about general recursion, in which 

our functions recur not on a sub-piece of the 
input data, but on a sub-problem of the 
original problem.
– We talk about how to determine whether a sub-

problem is simpler than the original, and how to 
document that fact in our design.

– General Recursion and Invariants make a powerful 
combination
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Module Introduction (2)

• Then, we talk about the important topic of 
algorithmic complexity.
– We talk about how to describe the time your 

algorithm will take on a given input
– We talk about what things are worth optimizing for 

efficiency
• Spoiler alert: the answer is very, very few

• We’ll also introduce more Java examples, to show 
you how these ideas apply to conventional 
programs with assignment statements. 

3



Module 08

4

Basic Principles

Designing 
Data

Designing 
Functions

Designing 
Systems

Tools and 
Techniques

Computing 
with Lists

Computing 
with Trees 

and Graphs

Computing
with Higher-

Order Functions

Designing 
with 

Invariants

Thinking 
about 

Efficiency

Object-Oriented 
Programming

Interfaces and 
Classes

Inheritance

Objects with 
Mutable State

Efficiency, 
Part 2



General Recursion

• So far, we've written our functions using the 
observer template to recur on the sub-pieces of 
the data.  We sometimes call this structural 
recursion.

• In this module, we'll see some examples of 
problems that don't fit neatly into this pattern.

• We'll introduce a new family of strategies, called 
general recursion, to describe these examples.

• General recursion and invariants together provide 
a powerful combination.
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Structural Recursion

• Our observer templates always recurred on 
the sub-pieces of our structure.

• This is sometimes called structural recursion.
• But that’s not the only way to use recursion.
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Divide-and-Conquer 
(General Recursion)

• How to solve the problem:
– If it's easy, solve it immediately
– If it's hard:

• Find one or more easier problems whose solutions will 
help you find the solution to the original problem.

• Solve each of them
• Then combine the solutions to get the solution to your 

original problem
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An example: merge sort

• Let's turn to a different example:  merge sort, 
which you should know from your 
undergraduate data structures or algorithms 
course.

• Divide the list in half, sort each half, and then 
merge two sorted lists.

• First we write merge, which merges two 
sorted lists.
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But first, a data definition

;; A SortedList is a list of Reals, 
;;  sorted by <.  Duplicates are
;;  allowed.
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Just following the 
Recipe….



merge
;; merge : SortedList SortedList -> SortedList
;; RETURNS: the sorted merge of its two arguments
;; strategy: recur on (rest lst1) or (rest lst2)
(define (merge lst1 lst2)

(cond
[(empty? lst1) lst2]
[(empty? lst2) lst1]
[(< (first lst1) (first lst2))
(cons (first lst1) (merge (rest lst1) lst2))]

[else
(cons (first lst2) (merge lst1 (rest lst2)))]))
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If the lists are of length n, this function 
takes time proportional to n.  We say 
that the time is O(n).



Why does this function halt?

• Our standard argument is:  the input gets 
smaller at every recursive call, so eventually it 
can’t get any smaller.

• But what’s the “input” here?  And what do we 
mean by “smaller”?

• “smaller” is easy: we are recurring on the rest
of a list, so probably “smaller” should mean 
“smaller length”
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Why does this function halt? (2)

• (length lst2) doesn’t get smaller at every call
– look at the first recursive call).

• (length lst1) doesn’t get smaller at every call
– look at the second recursive call

• But the sum of (length lst1) and (length lst2) 
does get smaller at every call
– at each call, either (length lst1) or (length lst2)

decreases by 1, so their sum is guaranteed to 
decrease by 1!

12



Halting Measure (1)

• Remember, part of design is getting knowledge out of 
our heads and on to a piece of paper.  How do we 
document our knowledge about why our function 
halts?

• We document this knowledge as a halting measure.
• A halting measure is an integer-valued quantity that 

can't be less than zero, and which decreases at each 
recursive call in your function.

• The halting measure is a way of explaining how each of 
the subproblems are easier than the original.
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Halting Measure (2)

• Since the measure is integer-valued, and it 
decreases at every recursive call, your 
function can't make more recursive calls than 
what the halting measure says.

• In particular, it must halt!
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Possible halting measures

• the value of a NonNegInt argument
• the size of an s-expression
• the length of a list
• the number of elements of some set
• a non-negative integer quantity that depends 

on one of the quantities above

15



So for merge, we write:
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;; merge : SortedList SortedList -> SortedList
;; merges its two arguments
;; strategy: recur on (rest lst1) or (rest lst2)
;; HALTING MEASURE: (length lst1) + (length lst2) 
(define (merge lst1 lst2)

(cond
[(empty? lst1) lst2]
[(empty? lst2) lst1]
[(< (first lst1) (first lst2))
(cons (first lst1) (merge (rest lst1) lst2))]

[else
(cons (first lst2) (merge lst1 (rest lst2)))]))



Checking the halting measure for 
merge

• Proposed halting measure: 
– (length lst1) + (length lst2)

• Justification:
– (length lst1) and (length lst2) are both 

always non-negative, so their sum is non-negative.
– At each recursive call, either lst1 or lst2 becomes 

shorter, so either way the sum of their lengths is 
shorter.

• So (length lst1) + (length lst2) is a 
halting measure for merge.
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merge-sort
;; merge-sort : RealList -> SortedList
(define (merge-sort lst)

(cond
[(empty? lst) lst]
[(empty? (rest lst)) lst]
[else

(local
((define evens (even-elements lst))
(define odds  (odd-elements lst)))

(merge 
(merge-sort evens)
(merge-sort odds)))]))
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Now we can write merge-sort.  
merge-sort takes its input and 
divides it into two 
approximately equal-sized 
pieces.  

Depending on the data 
structures we use, this can be 
done in different ways.  We 
are using lists, so the easiest 
way is to take every other 
element of the list, so the list 
(10 20 30 40 50) would be split 
into (10 30 50) and (20 40) .

We sort each of the pieces, 
and then merge the sorted 
results.



This is really different

• Merge-sort just did something very different from 
anything we’ve seen before: it recurred on two 
things, neither of which is (rest lst) .

• We recurred on 
– (even-elements lst)
– (odd-elements  lst)

• Neither of these is a sublist of lst .
• But each of these is guaranteed to be shorter 

than lst.
– Really?? Let's check it...
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Is (even-elements lst) really always 
shorter than lst ?

• Hmm, we’d better look at even-elements and 
odd-elements a little more closely.

• We didn’t write formal purpose statement for 
these functions, but we can look at some 
plausible examples:
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Examples for even-elements and odd-
elements

(even-elements (list 10 20 30 40)) 
= (list 20 40)

(even-elements empty) = empty
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We didn’t specify whether the elements of the list 
should be counted from 0 or 1.  Let’s choose to count 
from 1.

No doubt about this one!   But wait:  
this already falsifies our hypothesis 
that (even-elements lst) is always 
shorter than lst



When is (even-elements lst) shorter 
than lst?

• When (even-elements lst) and (odd-elements lst) are 
called, we know that lst has length at least 2.

• That means the first element of lst is NOT in (even-
elements lst).  So (even-elements lst) is shorter than 
lst.

• Furthermore, the second element of lst is NOT in (odd-
elements lst) . So (odd-elements lst) is shorter than lst.

• Summary: if (length lst) ≥ 2, (even-elements lst) and 
(odd-elements lst) are both strictly shorter than lst

• Luckily, that’s all we need!
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Also need to confirm that our 
implementations of odd-
elements and even-elements
satisfies this.  (Demonstration 
deferred)



Halting measure for merge-sort
• Proposed halting measure:  (length lst)
• Justification of halting measure:

– (length lst) is always  a non-negative integer.
– At each recursive call, (length lst) ≥ 2
– If (length lst) ≥ 2, then 

(length (even-elements lst)) and 
(length (odd-elements lst))

are both strictly less than (length lst). 
• [As shown on Preceding slide]

– So (length lst) is a halting measure for merge-
sort.
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Running time for merge sort
• Splitting the list in this way takes time proportional to the length n 

of the list.  The call to merge likewise takes time proportional to n.  
We say this time is O(n).

• If T(n) is the time to sort a list of length n, then T(n) is equal to the 
time 2*T(n/2) that it takes to sort the two sublists, plus the time 
O(n) of splitting the list and merging the two results:

• So the overall time is
T(n) = 2*T(n/2) + O(n)

• When you take algorithms, you will learn that all this implies that 
T(n) = O(n log n).  This is better than a selection sort, which takes 
O(𝒏𝒏𝟐𝟐). 

• This is all for the worst case: we will talk about all this more 
precisely in the second half of this module.
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A Numeric Example

fib : NonNegInt -> NonNegInt
(define (fib n)

(cond
[(= n 0) 1]
[(= n 1) 1]
[else (+ (fib (- n 1))

(fib (- n 2)))]))

Here's the standard recursive definition 
of the fibonacci function



A Numeric Example (2)

fib : NonNegInt -> NonNegInt
(define (fib n)

(cond
[(= n 0) 1]
[(= n 1) 1]
[else (+ (fib (- n 1))

(fib (- n 2)))]))

Let's check to see that the recursive calls obey the 
contract.

When we get to the recursive calls, if n is a 
NonNegInt, and it is not 0 or 1, then it must be 
greater than or equal to 2, so n-1 and n-2 are both 
NonNegInt's.

So the recursive calls don't violate the contract.



Halting measure for fib

• Proposed halting measure: n 
• Justification for halting measure:

– n is always a non-negative integer (by the 
contract)

– At each recursive  call, n-1 and n-2 are both non-
negative  integers,  and each is strictly smaller 
than n. So n decreases at each recursive call.

• So n is a halting measure for fib.
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What about (fib -1)?

(fib -1)
= (+ (fib -2) (fib -3))
= (+ (+ (fib -3) (fib -4))

(+ (fib -4) (fib -5))
= etc.
Oops!  This doesn't terminate!



What does this tell us?

• First, it tells us that using general recursion we 
can write functions that may not terminate.

• Is there something wrong with our termination 
argument?

• No, because the termination argument only says 
what happens when n is a NonNegInt

• -1 is a contract violation, so anything could 
happen.

• If we want to make the contract Int -> Int , then 
we need to document the non-termination 
behavior:
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Documenting non-termination

fib : Integer -> Integer
Halting Measure: 

If n is non-negative, then n is a 
halting measure.  

If n is negative, the function 
fails to halt.
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What do I need to deliver?

• You must write down a halting measure for 
each function that uses general recursion.

• You don't have to write down a justification 
for halting measure but you should be 
prepared to explain it at codewalk.

• If your function does not terminate on some 
input problems, you should write down a 
description of the inputs on which your 
program fails to halt.
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Wait, isn’t that a lot of work?

• Most of your functions will recur on a 
substructure of the input data.  We call this 
structural recursion.

• If you just use structural recursion, you don’t 
need to supply a halting measure, because 
structural recursions always halt. (See Lesson 
5.5)
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Most of the time, identifying the 
halting measure is easy

• It’s usually something like
– “The value of n” (a NonNegInt)
– “the length of lst” 
– “the size of the unknown region” (see Lesson 8.3 

on Binary Search)

• Only rarely will be it be something more 
complicated.
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Structural Recursion vs. General 
Recursion

(... (f (rest lst))) is structural
(f (... (rest lst))) is general
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You can usually tell just from the function definition whether it is structural
or general recursion.

In the first example here, f is called on (rest lst), which is a component of the
list, and is therefore smaller than lst. This is what the observer template for
lists tells us.

In the second example, f is being called some other value that happens to be
computed from (rest lst), but that’s not the same as (rest lst). So this
example is general recursion. There’s no telling how big (... (rest
lst)) is. If we call f on it, we’d better have a halting measure and a
justification to ensure that the measure of (... (rest lst)) is smaller
than the measure of lst .



How to write down the design strategy

You can write down a general-recursion strategy as something like
STRATEGY: Recur on <value>

or
STRATEGY: Recur on <value>; halt when  <condition>

or
STRATEGY: Recur on <values>; <describe how 
answers are combined>
These are just patterns; in general, a strategy is a tweet-sized 
description of how the function works.  At this point in the course, 
we'll give you a lot of freedom in doing this.  There’s no hard-and-
fast right and wrong for these:  the question is whether the 
description is likely to be useful to the reader.
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What do I need to deliver?

• You must write down a halting measure for 
each function that uses general recursion.

• You don't have to write down justification for 
your halting measure, but you should be 
prepared to explain it at codewalk.

• If your function does not terminate on some 
input problems, you should write down a 
description of the inputs on which your 
program fails to halt.
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Lesson Summary
• We've introduced general recursion, also known as divide-

and-conquer .
• In general recursion, we solve the problem by combining 

solutions to easier subproblems.
• In each use of general recursion, you must propose a 

halting measure that documents the "difficulty" of each 
instance of the problem.

• You must be able to justify the proposed halting measure 
by explaining why the measure of each subproblem is 
smaller than the measure of the original problem. 

• Structural decomposition is a special case where the data 
definition guarantees the subproblem is easier, so it’s not 
necessary to document a halting measure.
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Next Steps

• Study the files 08-1-merge-sort.rkt in the 
Examples folder.

• Do Guided Practices 8.1 and 8.2
• If you have questions about this lesson, ask 

them on the Discussion Board
• Go on to the next lesson

38


	General Recursion
	Module Introduction (1)
	Module Introduction (2)
	Module 08
	General Recursion
	Structural Recursion
	Divide-and-Conquer �(General Recursion)
	An example: merge sort
	But first, a data definition
	merge
	Why does this function halt?
	Why does this function halt? (2)
	Halting Measure (1)
	Halting Measure (2)
	Possible halting measures
	So for merge, we write:
	Checking the halting measure for merge
	merge-sort
	This is really different
	Is (even-elements lst) really always shorter than lst ?
	Examples for even-elements and odd-elements
	When is (even-elements lst) shorter than lst?
	Halting measure for merge-sort
	Running time for merge sort
	A Numeric Example
	A Numeric Example (2)
	Halting measure for fib
	What about (fib -1)?
	What does this tell us?
	Documenting non-termination
	What do I need to deliver?
	Wait, isn’t that a lot of work?
	Most of the time, identifying the halting measure is easy
	Structural Recursion vs. General Recursion
	How to write down the design strategy
	What do I need to deliver?
	Lesson Summary
	Next Steps

