
Case Study: Undefined Variables

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 7.4

1
© Mitchell Wand, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Learning Objectives

• At the end of this lesson the student should be able to:
– explain the how defined and undefined variables work in

our GarterSnake minilanguage

– identify the undefined variables in a GarterSnake program

– construct a data representation for a program in
GarterSnake or a similar language

– explain an algorithm for finding undefined variables in a
GarterSnake program

– understand how the algorithm follows the structure of the
data representation

– write similar algorithms for manipulating programs in
GarterSnake or a similar simple programming language.

2

A Tiny Programming Language:
GarterSnake

• We are writing a compiler for a tiny language,
called GarterSnake.

• We want to write a program that checks a
GarterSnake program for undefined variables.

• Let's describe the GarterSnake language:

3

The GarterSnake programming
language: Programs

• A Program is a sequence of function
definitions. The function defined in each
definition is available for use in all of the
following definitions.

4

Example: A GarterSnake program

def f1(x):f1(x)
; f1 is available in the body of f1
def f2 (x, y):f1(y)
; f1 is available in the body of f2
; spaces are ignored
def f3 (x,z): f1(f2(z,f1))
; f1 and f2 are available in the body of f3
; you can pass a function as an argument
def f4 (x, z):x(z,z)
; you can call an argument as a function

5

GarterSnake Definitions

• A Definition looks like

def f(x1,..,xn):exp

• This defines a function named f with arguments
x1, x2, etc., and body exp.

• The arguments of the function are available in
the body of the function.

• The function f itself is also available in the body
of the function.

• It is legal for a function to take no arguments.

6

GarterSnake Expressions

• An Expression is either a variable v or a function call
f(e1,..,en) .

• v is a reference to the variable or function named v .
• f(e1,e2,...) is an application of f to the arguments e1,

e2, etc.
• It is legal for a function to be applied to no arguments.
• There is no distinction between function names and

argument names:
– You can pass a function as an argument,
– You can call an argument as a function.
– You can return a function as the value of a function call.

7

The Problem: Undefined variables

An occurrence of a variable is undefined if it is in
a place where the variable is not available.
Examples:

def f7(x): f2(x)
; f2 is undefined in the body of f7
def f2(x,y): f3(y,x)
; f3 is undefined in the body of f2
def f3(x,z):f7(f2(z,y),z)
; y is undefined in the body of f3

8

I purposely called this f7 to demonstrate
that the names of the variables don't

matter; it's just their position

The Requirements

Given a GarterSnake program p,
determine whether there are any
undefined variables in p.

;; program-all-defined?
;; : Program -> Bool
;; GIVEN: A GarterSnake program p
;; RETURNS: true iff every variable
;; occurring in p is available at the
;; place it occurs.

9

Data Definitions

• We want to represent only as much
information as we need to do the task.

• So we don’t need to worry about spaces,
details of syntax, etc.

• We just need to represent the structure of the
programs.

• All the clues are already in the definitions

10

Data Definitions: Programs

• We said: A Program is a sequence of function
definitions.

• So we write a corresponding data definition:

;; A Program is represented as a DefinitionList

11

• We wrote: A Definition looks like

def f(x1,..,xn):exp

• So we write a data definition:

Data Definition: Definitions

12

;; A Definition is a represented as a struct
;; (make-def name args body)
;; INTERPRETATION:
;; name : Variable is the name of the function being defined
;; args : VariableList is the list of arguments of the function
;; body : Exp is the body of the function.

;; IMPLEMENTATION:
(define-struct def (name args body))

;; CONSTRUCTOR TEMPLATE
;; (make-def Variable VariableList Exp)

Data Definition: Expressions

• We wrote: an Expression is either a variable v
or a function call f(e1,..,en) .

• So we write a data definition

13

;; An Exp is represented as one of the following structs:
;; -- (make-varexp name)
;; -- (make-appexp fn args)
;; INTERPRETATION
;; (make-varexp v) represents a use of the variable v
;; (make-appexp f (list e1 ... en)) represents a call to the function
;; named f, with arguments e1,..,en
;; CONSTRUCTOR TEMPLATES
;; -- (make-varexp Variable)
;; -- (make-appexp Variable ExpList)

;; IMPLEMENTATION
(define-struct varexp (name))
(define-struct appexp (fn args))

Data Definition: Variables

• We never said anything about what is or isn’t
a legal variable name. Based on the examples,
we’ll choose to represent them as Racket
symbols.

• We could have made other choices.

• Data Definition:

14

;; A Variable is represented as a Symbol

Global View of the GarterSnake
representation

15

Variable Application

ExpressionVariableListVariable

Definition

DefinitionList

Program

ExpListVariable

A DefinitionLists may contain a
Definition and a DefinitionLists

A ExpListression may
contain a Expression
and a ExpListressions

means “contains” or “may contain”

Observer Templates

;; pgm-fn : Program -> ??
#;
(define (pgm-fn p)

(deflist-fn p))

;; def-fn : Definition -> ??
#;
(define (def-fn d)

(... (def-name d) (def-args d) (def-body d)))

;; exp-fn : Exp -> ??
#;
(define (exp-fn e)

(cond
[(varexp? e) (... (varexp-name e))]
[(appexp? e) (... (appexp-fn e) (explist-fn (appexp-args e)))]))

;; We omit the ListOf-* templates because they are standard and you should know
;; them by heart already.

16

In Racket, #; marks the next S-
expression as a comment. So this
definition is actually a comment.

This is handy for templates.

Sidebar: Data Design in Racket

• We’ve chosen to represent GarterSnake programs
as recursive structures.

• This is sometimes called “abstract syntax”
because it abstracts away all the syntactic details
of the programs we are manipulating.

• Recursive structures are our first-choice
representation for information in Racket.
– We would use a similar representation in Java, as we

did in 05-4-javatrees.java

• You will almost never go wrong choosing that
representation.

17

Sidebar: Symbols and Quotation

• Our data design uses symbols.

• A Symbol is a primitive data type in Racket.

• It looks like a variable.

• To introduce a symbol in a piece of code, we
precede it with a quote mark. For example, 'z
is a Racket expression whose value is the
symbol z.

18

Sidebar: Quotation (2)

• You can also use a quote in front of a list. Quotation tells Racket
that the thing that follows it is a constant whose value is a symbol
or a list. Thus

• Thus ‘(a b c) and (list ‘a ‘b ‘c) are both Racket expressions that
denote a list whose elements are the symbols a, b, and c.

• On the other hand, (a b c) is a Racket expression that denotes the
application of the function named a to the values of the variables b
and c.

• This is all you need to know about symbols and quotation for right
now.

• There is lots more detail in HtDP/2e, in the Intermezzo entitled
“Quote, Unquote”. But that chapter covers way more than you
need for this course.

19

Data Design: Example

EXAMPLE:
def f1(x):f1(x)
def f2(x,y):f1(y)
def f3(x,y,z):f1(f2(z,y),z)
is represented by
(list

(make-def 'f1 (list 'x)
(make-appexp 'f1 (list (make-varexp 'x))))

(make-def 'f2 (list 'x 'y) (make-appexp 'f1 (list (make-varexp 'y))))
(make-def 'f3 (list 'x 'y 'z)

(make-appexp 'f1 (list (make-appexp 'f2
(list (make-varexp 'z)

(make-varexp 'y)))
(make-varexp 'z)))))))

20

Now that we’ve briefly explained about
symbols and quotation, we can give an

example of the representation of a
GarterSnake program

System Design (1)

;; We'll need to recur on the list structure of programs. When we
;; analyze a definition, what information do we need to carry forward?
;; Let's look at an example. We'll annotate each definition with a
;; list of the variables available in its body.

#|
def f1(x):f1(x) ; f1 and x are available in the body.
def f2(u,y):f1(y) ; f1, f2, u, and y, are available in the body.
def f3(x,z):f1(f2(z,f1)) ; f1, f2, f3, x, and z are available in the body.
def f4(x,z):x(z,z) ; f1, f2, f3, f4, x, and z are available in the
body.
|#

;; In each case, the variables available in the body are the names of
;; the functions defined _before_ the current function, plus the names
;; of the current function and its arguments.

21

System Design (2)

;; Let's look at the "middle" of the calculation.
;; When we analyze the definition of f3, we need to know that f1 and
;; f2 are defined. When we analyze the body of f3, we need to know
;; that f1, f2, x, and z are defined.

;; So we generalize our functions to take a second argument, which is
;; the set of defined variables.

;; We'll have a family of functions that follow the data definitions;

;; program-all-defined : Program -> Boolean
;; deflist-all-defined?: DefinitionList SetOfVariable -> Boolean
;; def-all-defined? : Definition SetOfVariable -> Boolean
;; exp-all-defined? : Exp SetOfVariable -> Boolean

22

deflist-all-defined?

;; deflist-all-defined? : DefinitionList SetOfVariable -> Boolean
;; GIVEN: a list of definitions 'defs' from some program p and a set of
;; variables 'vars'
;; WHERE: vars is the set of variables available at the start of defs in
;; p.
;; RETURNS: true iff there are no undefined variables in defs.
;; EXAMPLES: See examples above (slide 8)
;; STRATEGY: Use template for DefinitionList on defs. The names
;; available in (rest defs) are those in vars, plus the variable
;; defined in (first defs).

(define (deflist-all-defined? defs vars)
(cond

[(null? defs) true]
[else
(and
(def-all-defined? (first defs) vars)
(deflist-all-defined? (rest defs)

(set-cons (def-name (first defs))
vars)))]))

23

You can’t tell if a
variable is
undefined unless
you know
something about
the program it
occurs in! The
WHERE invariant
captures this
information.

Don’t say “see examples above” or “see tests below”
unless there really are such examples or tests.

def-all-defined?

;; def-all-defined? : Definition SetOfVariable -> Boolean
;; GIVEN: A definition 'def' from some program p and a set of
;; variables 'vars'
;; WHERE: vars is the set of variables available at the start of def in
;; p.
;; RETURNS: true if there are no undefined variables in the body of
;; def. The available variables in the body are the ones in def, plus
;; the name and arguments of the definition.
;; EXAMPLES: See examples above (slide 8)
;; STRATEGY: Use template for Definition on def

(define (def-all-defined? def vars)
(exp-all-defined? (def-body def)

(set-cons
(def-name def)
(set-union (def-args def) vars))))

24

exp-all-defined?

;; exp-all-defined? : Exp SetOfVariable -> Boolean
;; GIVEN: A GarterSnake expression e, occurring in some program
;; p, and a set of variables vars
;; WHERE: vars is the set of variables that are available at the
;; occurrence of e in p
;; RETURNS: true iff all the variable in e are defined
;; STRATEGY: Use template for Exp on e

(define (exp-all-defined? e vars)
(cond
[(varexp? e) (my-member? (varexp-name e) vars)]
[(appexp? e)
(and (my-member? (appexp-fn e) vars)

(andmap
(lambda (e1) (exp-all-defined? e1 vars))
(appexp-args e)))]))

25

program-all-defined?

;; And finally, we can write program-all-defined?, which
;; initializes the invariant information for the other
;; functions.

;; program-all-defined? : Program -> Bool
;; GIVEN: A GarterSnake program p
;; RETURNS: true iff there every variable occurring in p
;; is defined at the place it occurs.
;; STRATEGY: Initialize the invariant of deflist-all-defined?

(define (program-all-defined? p)
(deflist-all-defined? p empty))

26

It would be ok to write “call a
more general function” here, but
this is more informative.

Call Graph for this Program

27

We used an andmap
instead of defining
ExpList-all-defined?

variable case
application

case

exp-all-
defined?

VariableListVariable

def-all-defined

deflist-all-
defined?

program-all-
defined?

andmap exp-all-defined?
on arguments

is function
name defined?

means “calls” or “may call”

See how the call graph follows the
structure of the data!

28

Variable Application

ExpressionVariableListVariable

Definition

DefinitionList

Program

ExpListressionVariable

A DefinitionLists may contain a
Definition and a DefinitionLists

A ExpListression may
contain a Expression
and a ExpListressions

means “contains” or “may contain”

Summary

• At the end of this lesson the student should be able to:
– explain how defined and undefined variables work in our

GarterSnake minilanguage

– identify the undefined variables in a GarterSnake program

– construct a data representation for a program in
GarterSnake or a similar language

– explain an algorithm for finding undefined variables in a
GarterSnake program

– understand how the algorithm follows the structure of the
data representation

– write similar algorithms for manipulating programs
GarterSnake or a similar simple programming language.

29

Next Steps

• Study Examples/07-3-gartersnake.rkt

• If you have questions about this lesson, ask
them on the Discussion Board

• Do Guided Practices 7.3 and 7.4

• Go on to the next lesson

30

