
From Templates to Folds

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 6.6

1
© Mitchell Wand, 2012-2014
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Introduction

• Last week, we saw how the built-in mapping
functions on lists, like map, filter, and foldr,
made writing functions on lists easier.

• In this lesson we'll see how we can do
something similar for any recursive data
definition.

2

Learning Objectives

• At the end of this lesson you should be able
to:

– Write a fold function for any recursive data
definition

– Use the fold function to define useful functions on
that data

3

Binary Trees

(define-struct leaf (datum))

(define-struct node (lson rson))

;; A Tree is either

;; -- (make-leaf Number)

;; -- (make-node Tree Tree)

4

Here is the definition of
a binary tree again.

Template

tree-fn : Tree -> ???

(define (tree-fn t)

(cond

[(leaf? t) (... (leaf-datum t))]

[else (...

(tree-fn (node-lson t))

(tree-fn (node-rson t)))]))

5

Self-reference in the data definition
leads to self-reference in the template;
Self-reference in the template leads to
self-reference in the code.

And here is the template again.

The shape of the
program follows
the shape of the
data

..or..

The template has two blanks

tree-fn : Tree -> ???

(define (tree-fn t)

(cond

[(leaf? t) (... (leaf-datum t))]

[else (...

(tree-fn (node-lson t))

(tree-fn (node-rson t)))]))

6

Two blanks: one blue and one
orange

From templates to folds

• Observe that the template has two blanks: the
blue one and the orange one.

• Any two functions that follow the template
will be the same except for what goes in the
blanks.

• So we can generalize them by adding
arguments for each blank.

7

Template  tree-fold

tree-fold : ... Tree -> ???

(define (tree-fold combiner base t)

(cond

[(leaf? t) (base (leaf-datum t))]

[else (combiner

(tree-fold combiner base

(node-lson t))

(tree-fold combiner base

(node-rson t)))]))

8

tree-fold : ... Tree -> ???

(define (tree-fold combiner base t)

(cond

[(leaf? t) (... (leaf-datum t))]

[else (...

(tree-fold combiner base

(node-lson t))

(tree-fold combiner base

(node-rson t)))]))
Corresponding to each blank, we add an extra argument: combiner (in blue) for the
blue blank and base (in orange) for the orange blank, and we pass these arguments to
each of the recursive calls, just like we did for lists. The strategy for tree-fold is "Use
observer template for Tree on t"

What's the contract for tree-fold?

tree-fold

: (X X -> X) (Number -> X) Tree -> X

(define (tree-fold combiner base t)

(cond

[(leaf? t) (base (leaf-datum t))]

[else (combiner

(tree-fold combiner base

(node-lson t))

(tree-fold combiner base

(node-rson t)))]))

9

(Number -> X)

(X X -> X)

X X

X

contract for
base

contract for
combiner

Let's figure out
the contract for
tree-fold. Let's
analyze the
subexpressions to
see what kind of
value they return.

If the whole function
returns an X, then

(base (leaf-datum t))
must return an X.

(leaf-datum t) returns
a number, and

(base (leaf-datum t))
must return an X, so

base must be
(Number -> X)Since tree-fold returns

an X, the arguments to
combiner are both X's,

and combiner itself must
return an X.

So combiner must be an
(X X -> X)

Let's assume the
whole function returns

an X.

Be sure to reconstruct the original
functions!

(define (tree-sum t)

(tree-fold + (lambda (n) n) t))

(define (tree-min t)

(tree-fold min (lambda (n) n) t))

(define (tree-max t)

(tree-fold max (lambda (n) n) t))

10

Here are our original
functions, sum, tree-min, and
tree-max, rewritten using
tree-fold.

The strategy for each of these
is "Call a more general
function."

Another example of trees: Ancestor
Trees

(define-struct person (name father mother))
(define-struct adam ())
(define-struct eve ())

;; A Person is either
;; -- (make-adam)
;; -- (make-eve)
;; -- (make-person String Person Person)

;; person-fn : Person -> ???
(define (person-fn p)

(cond
[(adam? p) ...]
[(eve? p) ...]
[else (...

(person-name p)
(person-fn (person-father p))
(person-fn (person-mother p)))]))

11

The Structure of the
Program Follows the
Structure of the Data

Template for Person

;; person-fn : Person -> ???

(define (person-fn p)

(cond

[(adam? p) ...]

[(eve? p) ...]

[else (...

(person-name p)

(person-fn (person-father p))

(person-fn (person-mother p)))]))

12

Here's the template for our
ancestor trees. We have three
blanks: one blue, one purple,
and one orange.

From template to fold:

;; person-fold : ... Person -> ???

(define (person-fold adam-val eve-val combiner p)

(cond

[(adam? p) adam-val]

[(eve? p) eve-val]

[else (combiner

(person-name p)

(person-fold adam-val eve-val combiner

(person-father p))

(person-fold adam-val eve-val combiner

(person-mother p)))]))

13

Corresponding to our three blanks we
add three arguments: the value for
adam (in blue), the value for eve (in
purple) and the combiner (in orange).

What's the contract for person-fold?

;; person-fold

;; : X X (String X X -> X) Person -> X

(define (person-fold adam-val eve-val combiner p)

(cond

[(adam? p) adam-val]

[(eve? p) eve-val]

[else (combiner

(person-name p)

(person-fold adam-val eve-val combiner

(person-father p))

(person-fold adam-val eve-val combiner

(person-mother p)))]))

14

X

(String X X -> X)

String

X

X

We can work out the contract for person-fold the same way that we did for tree-
fold. Here again we've marked some of the sub-expressions with the kind of
value they return.

Observe, as before, that the arguments to combiner match combiner's contract,
and that all three branches of the cond return an X, so the whole function is
guaranteed to return an X.

Summary

• You should be able to:

– Write a fold function for any recursive data
definition

– Use the fold function to define useful functions on
that data

15

Next Steps

• Study the file 06-6-tree-folds.rkt in the
Examples folder.

• If you have questions about this lesson, ask
them on the Discussion Board

• Do Guided Practices 6.6 and 6.7

• Do Problem Set 6

16

