
Generalizing Over Functions

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 6.2

1
© Mitchell Wand, 2012-2016
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Introduction

• In the previous lesson, we generalized over
data items that were strings. In this lesson,
we will see how to use the same idea to
generalize over data items that are functions.

• We'll also learn about a new strategy, called
Use HOF ("Use higher-order function")

• We'll learn how to write contracts for
functions that take other functions as
arguments.

2

Learning Objectives

• At the end of this lesson you should be able to:
– recognize when two function definitions differ only in

what functions are called at particular places in the
definition

– apply the generalization technique from Lesson 5.1 to
such situations.

– use the new strategy, called Use HOF

– use lambda to define functions that don't need a
name.

– read and write contracts for functions that take other
functions as arguments.

3

Example

;; NumberList -> NumberList

;; GIVEN: a list of numbers

;; RETURNS: a list with 1 added to each number

;; (add-1-to-each (list 11 22 33)) = (list 12 23 34)

;; STRATEGY: Use template for NumberList on lst

(define (add-1-to-each lst)

(cond

[(empty? lst) empty]

[(else (cons

(add1 (first lst))

(add1-to-each (rest lst))))]))

4

Here’s another function definition with
a similar structure

(define-struct employee (name salary))
;; An Employee is a (make-employee String PosInt)

;; extract-names : ListOfEmployee -> ListOfString
;; GIVEN: a list of employees
;; RETURNS: the list of their names
;; STRATEGY: Use template for ListOfEmployee on loe
(define (extract-names loe)

(cond
[(empty? loe) empty]
[else (cons

(employee-name (first loe))
(extract-names (rest loe)))]))

5

interp: salary in
USD*100

These functions only differ in one
place

6

NumberList -> NumberList
(define (add-1-to-each lst)
(cond
[(empty? lst) empty]
[(else (cons

(add1
(first lst))

(add1-to-each
(rest lst))))]))

ListOfEmployee -> ListOfString
(define (extract-names loe)
(cond
[(empty? loe) empty]
[else (cons

(employee-name
(first loe))

(extract-names
(rest loe)))]))

On one side, we use function add1, and on the
other we use the function employee-name.

(define (apply-to-each fn lst)
(cond

[(empty? lst) empty]
[else (cons

(fn (first lst))
(apply-to-each fn (rest lst)))]))

(define (add-1-to-each lst)
(apply-to-each add1 lst))

(define (extract-names loe)
(apply-to-each employee-name loe))

7

So we can do the same
thing we did before: we
add an argument for the
difference.

We recover the original functions by passing one or the
other function as the value of the argument.

Let's watch this work

(apply-to-each add1 (cons 10 (cons 20 (cons 30 empty))))

= (cons (add1 10)

(apply-to-each add1 (cons 20 (cons 30 empty))))

= (cons 11

(apply-to-each add1 (cons 20 (cons 30 empty))))
= (cons 11

(cons (add1 20)

(apply-to-each add1 (cons 30 empty)))

= (cons 11 (cons 21 (apply-to-each add1 (cons 30 empty))))

= (cons 11 (cons 21 (cons (add1 30)

(apply-to-each add1 empty))))

= (cons 11 (cons 21 (cons 31 empty))))
8

Digression: Computing as algebra

• The calculation on the previous slide just used
equational reasoning, like you did in Middle
School algebra.

• The functional approach to programming,
which we have been using now, allows us to
reason about programs just using equations
like these.

• This is much simpler than reasoning about
programs with assignment statements.

9

What about the design strategy?

The definition for apply-to-each follows the template, so the
strategy is "use template". This will work on lists of any
kind of value, so we say it uses the template for XList.

;; STRATEGY: Use template for XList on lst
(define (apply-to-each fn lst)

(cond
[(empty? lst) empty]
[else (cons

(fn (first lst))
(apply-to-each fn (rest lst)))]))

10

What about add-1-to-each and
extract-names?

• Our new definitions for add-1-to-each and
extract-names do not follow the template:
they just use apply-to-each.

• We say that these functions use the strategy of
using a higher-order function (HOF).

• A higher-order function is simply a function
where one or more of the arguments is a
function, such as add1 or employee-name.

• Note that this terminology is different from that
in HtDP.

11

What about add-1-to-each and
extract-names?

;; strategy: Use HOF apply-to-each on lst

(define (add-1-to-each lst)

(apply-to-each add1 lst))

;; strategy: Use HOF apply-to-each on lst

(define (extract-names lst)

(apply-to-each employee-name lst))

12

Testing

• Testing for functions defined using higher-order
function composition is just like testing we saw in
the previous lesson.

• Original functions must be tested & working first
• Then write the generalized function and redefine

your old functions in terms of the generalized
one.

• Then comment out the old definitions, so your
old tests will now see the new definitions.

• The original tests should still pass.

13

Doing something complicated?

• The function to be passed to apply-to-each is
not always a built-in Racket function.

• Then just define your own:

(define (add5 n) (+ n 5))

(define (add-5-to-each lst)

(apply-to-each add5 lst))

• Of course we'll need contracts, purpose
statements, etc., for add5.

14

You can use ISL's local to do this

;; NumberList -> NumberList
;; GIVEN: a list of numbers
;; RETURNS: a list like the given one,
;; but with 5 added to each number.
;; STRATEGY: Use HOF apply-to-each
;; on lst
(define (add-5-to-each lst)

(local
;; add5 : Number -> Number
;; RETURNS: its argument + 5
((define (add5 n) (+ n 5)))
(apply-to-each add5 lst)))

15

In ISL, local allows
you to create local

definitions. See
HtDP2, sec 18.2.

Must provide contract
and purpose statement
for the local function.

Lambda can be used to define a
function without giving it a name.

(define (add-5-to-each lst)

(apply-to-each

;; Number -> Number

;; RETURNS: its argument + 5

(lambda (n) (+ n 5))

lst))

16

If you write a function using lambda, you still need a
contract and purpose statement.

A function that adds 5 to its argument

Let's stop and talk about lambda for a
minute

• The value of a lambda expression is a
function.

• You can use the lambda expression anywhere
you would use the function

• The value of (lambda (n) (+ n 5)) is a
function that adds 5 to its argument.

• (apply-to-all (lambda (n) (+ n 5)) lst)

returns a list like lst, but with 5 added to
each element.

17

Using lambda cuts down on the junk
in your code

These two are the same:

(local

((define (add5 n) (+ n 5))

(apply-to-all add5 lst))

(apply-to-all (lambda (n) (+ n 5)) lst)

Each returns a list like lst, but with 5 added to each
element.

18

Back to our example: where does the
value of n come from?

lst = (list 10 20 30 40)

(apply-to-each

(lambda (n) (+ n 5))

lst)

= (list 15 25 35 45)

19

apply-to-each applies the
lambda-function to each
element of the list in turn.
Here, n takes on the value of
each element of the list.

Opportunity for more generalization

• The 5 is a constant, so it can be generalized on
by replacing it with a new argument x.

• Example:

(add-x-to-each (list 10 20 30) 7)
= (list 17 27 37)

• We'll replace the local function add5 by a new
function called addx, which adds x to its
argument to its argument n.

20

Here's the definition

;; add-x-to-each
;; : NumberList Number -> NumberList
;; GIVEN: a list of numbers and a number
;; RETURNS: a list of numbers like the
;; given one, except that the given
;; number is added to each element of the
;; list.
;; STRATEGY: Use HOF apply-to-each on lst
(define (add-x-to-each lst x)

(local ((define (addx n) (+ n x)))
(apply-to-each addx lst)))

21

The “x” in (+ n
x) refers the
“x” in the
argument.

As before, lambda can be used in
order to avoid having to introduce a

local name

(define (add-x-to-each lst x)

(apply-to-each

;; Number -> Number

;; RETURNS: the sum of its argument

;; and the value of x.

(lambda (n) (+ n x))

lst))

22

What is the contract for apply-to-
each?

• Here are two examples of the use of apply-to-each.

• Each use can be described as follows: apply-to-each
takes a function from X's to Y's, and a list of X's, and it
returns a list of Y's

• In the first example X is Number and Y is also Number.

• In the second example, X is Employee and Y is String.

23

(apply-to-each add1 lst)
(apply-to-each employee-name loe)

What is the contract for apply-to-
each?

• We observed that apply-to-each takes a
function from X's to Y's, and a list of X's, and it
returns a list of Y's

• We write this down as a contract as follows:

24

(X->Y) XList -> YList

apply-to-each :

Understanding this contract (1)

• Here there is something new: one of the
arguments is a function, so the contract specifies
the contract for that function: the first argument
of apply-to-each must itself be a function that
takes an X and returns a Y. We write this using
the notation (X->Y).

• Can't use any old function as the first argument–
couldn't use +, for example.

25

(X->Y) XList -> YList

apply-to-each :

Understanding this contract (2)

• The X and Y mean that this function works for any
choice of X and Y.

• For example, we could use apply-to-each as
(Number -> Number) NumberList

-> NumberList

or as
(Employee -> String) ListOfEmployee

-> ListOfString

26

(X->Y) XList -> YList

apply-to-each :

We say that a function
with a contract like this

"polymorphic"

Let's call this by its correct name

• The standard name of apply-to-each is
map.

• That's what we'll call it from now on.

27

Higher-Order Functions FTW

• Now that we have higher-order functions, we can
compose functions more easily. Example:

;; STRATEGY: Use HOF map on lst
;; (twice)
(define (sqr-plus-one lst)
(map add1 (map sqr lst)))

(sqr-plus-one (list 2 3 4))
= (list 5 10 17)

28

https://www.google.com/webhp?hl=en&tab=mw&ei=12xNUr3zCMKLqQGsjYG4DA&ved=0CAUQqS4oAQ#hl=en&q=FTW

One-Pass vs Multi-Pass functions

Here are two versions of sqr-plus-one:

(define (sqr-plus-one lst)
(map add1 (map sqr lst)))

(define (sqr-plus-one lst)
(map

(lambda (n) (+ 1 (sqr n)))
lst))

(sqr-plus-one (list 2 3 4))
= (list 5 10 17)

29

Hand simulate each of these
functions, like we did for
(map add1 ...) back on slide 7.

The first version makes TWO
passes through the argument.
The second version goes
through the argument only
once.

Which of these is clearer?
Which might be more
efficient if the list is long?

Summary

• At the end of this lesson you should be able to:
– recognize when two function definitions differ only in

what functions are called at particular places in the
definition

– apply the generalization technique from Lesson 5.1 to
such situations.

– use the new strategy, called Use HOF

– use lambda to define functions that don't need a
name.

– read and write contracts for functions that take other
functions as arguments.

30

Next Steps

• Study 06-2-1-map.rkt in the examples folder

• If you have questions about this lesson, ask
them on the Discussion Board

• Do Guided Practice 6.2

• Go on to the next lesson

31

