Generalizing Similar Functions

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 6.1

: © Mitchell Wand, 2012-2015
TECT This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Module 06

s Tools and Object-Oriented
Basic Principles . .
Techniques Programming
|| Designing || Computing |_| Interfaces and
Data with Lists Classes
Designing Computing
- Functions — with Trees — Inheritance
and Graphs
Designing | | Objects with
Systems Mutable State
De5|gn|ng Efficiency,
— with
. Part 2
Invariants
Thinking
— about
Efficiency

Generalization

 The goal of generalization is to avoid having to
repeat code, whether the code is identical or
slightly different.

* |n this sequence of lessons, you will learn how
to do this, starting with very simple situations,
then covering more and more complex
situations.

Slogans for Generalization

* Never write the same code twice
— Don’t repeat yourself

— Single Point of Control
* fix each bug only once
e easier maintenance, modification

* Copy and Paste is bad practice
e Also known as: Refactoring

Module Outline

* Generalizing a constant to a variable
* Generalizing over functions

* Using prepackaged generalizations: map, foldr,
etc.

Learning Objectives for this Lesson

* By the end of this lesson, you should be able
to

— recognize when two functions differ only by a
constant

— rewrite the two functions using a single more
general function

— test your new function definitions

Imagine the following:

Your boss comes to you and asks you to write
a function called find-dog.

You follow the design recipe, write the code,
and test it.

Your boss and you are both happy.
Here’s what you wrote:

find-dog

;5 find-dog : StringlList -> Boolean
55 GIVEN: a list of strings
55 RETURNS: true iff "dog" is in the given list.
55 STRATEGY: Use template for StringlList on los
(define (find-dog los)
(cond
[(empty? los) false]
[else (or
(string=? (first los) "dog")
(find-dog (rest los)))]1))

(check-equal? (find-dog (list "cat" "dog" "weasel")) true)

(check-equal? (find-dog (list "cat" "elephant" "weasel"))
false)

The story continues

* The next morning, your boss comes to you
and asks you to write find-cat.

* You follow the design recipe, write the code,
and test it.

 Here’s what you wrote:

find-cat

55 find-cat : StringlList -> Boolean
55 GIVEN: a list of strings
55 RETURNS: true iff "cat" is in the given list.
55 STRATEGY: Use template for StringlList on los
(define (find-cat los)
(cond
[(empty? los) false]
[else (or
(string=? (first los) "cat")
(find-cat (rest los)))]))

(check-equal? (find-cat (list "cat" "dog" "weasel")) true)
(check-equal? (find-cat (list "elephant" "weasel")) false)

10

A lot of repeated work there!

* Your boss is happy, but you are less happy;
what if the next day, he asks you to write
find-elephant?

* You feel like you are wasting a lot of time!
e Let’s see just how alike these functions were.

11

These functions are very similar:

(define (find-dog 16€}________Ldefing>(find-cat los)

(cond (cond
[(empty? los) false] [(empty? los) false]
[else [else
(or (or
(string=? (string=?
(first los) (first los)
) > cat”)
(find-dog (find-cat
(rest los)))])) (rest los)))]))

The only differences between the functions are
their names, and the fact that one refers to
“dog” and the other refers to “cat”.

12

So generalize them by adding an
argument

53 find-animal : StringList String -> Boolean
53 returns true iff the given string is in the given list of strings.

(define (find-animal los)
(cond
[(empty? los) false]
[else (or
(string=? (first los))
(find-animal (rest los) ND)

(check-expect
(find-animal (list "cat" "elephant" "weasel") "elephant")
true)

(check-expect
(find-animal (list "cat" "elephant" "weasel") "beaver")
false)

Nothing mysterious here!

13

What did we do here?

* |f two functions differ only in a few places, add
extra arguments for those places.

* find-dog and find-cat can be generalized to
get find-animal. We replace a constant, like
"dog" or "cat" with an argument, here str.

* Moving common code to a single function
with some extra arguments is what is often
called "refactoring".

Generalization

Both functions were special cases of a more
general function.

The more general function takes extra
arguments that express the differences.

The arguments "specialize" the function.

Must make sure that we can to specialize back
to our original functions:

15

Confirm that the original functions can
still be expressed.

(define (find-dog los)
(find-animal los "dog"))

(define (find-cat los)
(find-animal los "cat"))

(define (find-elephant los)
(find-animal los "elephant"))

find-elephant is
now a one-liner. Yay!

What's the strategy?

55 STRATEGY: Use template for StringlList on los

(define (find-animal los)
In this function we are

(cond this
[(empty? los) false] é—————”””””— still using the template

[else (or
(string=? (first los))
(find-animal (rest los) N1))

53 STRATEGY: Call a more general function We could describe this as
(define (find-dog los) "call a simpler function”,

. . " " but it seems more
(find-animal los “dog™)) accurate to describe this

as calling a more general

Don't get all anxious functi
unction

about the difference.

17

How to test the new definitions

* To test the new definitions, comment out the old
definitions. This can be accomplished by using the
Racket menu item for "comment out with semicolons".

* An entire parenthesized expression can also be
commented out by prefixing it with #; (see the Help
Desk for details).

e Do NOT use the Racket menu item "comment out in a
box"—the result will be that your Racket file is
converted to a form that is no longer plain text, and
will not be viewable with ordinary tools (text editors,
web browsers, etc.).

Your file should now look like this:

#; (define (find-dog los) ...)
#; (define (find-cat los) ...)

The old definitions are commented out

(define (find-animal los str) ...)
(define (find-dog los)
(find-animal los "dog"))

find-dog now refers to the new definition

Now vour old tests should work
WITHOUT CHANGE

(check-equal?
(find-dog (list "cat" "dog" "weasel™))
true)

(check-equal?

(find-dog (list "cat" "elephant" "weasel"))
false)

(check-equal?

(find-cat (list "cat" "dog" "weasel™))
true)

(check-equal?

(find-cat (list "elep
false)

The new definitions of find-dog and
find-cat are the only ones visible, so
these are now testing the new
definitions.

Another Example: Pizza!

55 Data Definitions:
55 A Topping is a String.

;5 A Pizza is represented as a list of Toppings
55 INTERP: a pizza is a list of toppings,| listed from top to bottom

55 pizza-fn : Pizza -> ??
;3 (define (pizza-fn p)

HH (cond

¥ E(impti’? P)(%: .]t) The toppings are listed in a certain order,
35 else coe irs .)

s (pizza-fn Erest p)))])) SO We must explain the order in the

interpretation.
53 Examples:
(define plain-pizza empty)
(define cheese-pizza (list "cheese"))
(define anchovies-cheese-pizza (list "anchovies

cheese"))

21

replace-all-anchovies-with-onions

;3 replace-all-anchovies-with-onions
HE : Pizza -> Pizza
33 GIVEN: a pizza
55 RETURNS: a pizza like the given pizza, but with
55 onions in place of each layer of anchovies
(define (replace-all-anchovies-with-onions p)
(cond
[(empty? p) empty]
[else (if (string=? (first p) "anchovies")
(cons "onions"
(replace-all-anchovies-with-onions
(rest p)))
(cons (first p)
(replace-all-anchovies-with-onions

(rest p)))) 1))

22

Opportunities for Generalization

We can generalize over onions to get replace-
all-anchovies.

;5 replace-all-anchovies

HE : Pizza Topping -> Pizza

55 GIVEN: A pizza and a topping

55 RETURNS: a pizza like the given pizza, but
55 with all anchovies replaced by the given
;5 topping.

23

Opportunities for Generalization

Generalize over anchovies to get replace-
topping.

;3 replace-topping

55 + Pizza Topping Topping -> Pizza

55 GIVEN: a pizza and two toppings

55 RETURNS: a pizza like the given one, but
55 with all instances of the first topping
;3 replaced by the second one.

24

Summary

Functions will sometimes differ only in choice of
data items.

Functions can be generalized by adding new
argument(s) for the differences.

No magic here, but we will do the same thing in
more interesting ways in the following lessons.

Confirm the original functions work before
generalizing.

Test functions by renaming the originals and
running the same tests.

25

Next Steps

Study 06-1-1-find-dog.rkt and 06-1-2-pizza.rkt
in the examples folder.

If you have questions about this lesson, ask
them on the Discussion Board

Do Guided Practice 6.1
Go on to the next lesson.

