
Generalizing Similar Functions

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 6.1

1
© Mitchell Wand, 2012-2015
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Module 06

2

Basic Principles

Designing
Data

Designing
Functions

Designing
Systems

Tools and
Techniques

Computing
with Lists

Computing
with Trees

and Graphs

Computing with
Higher-Order

Functions

Designing
with

Invariants

Thinking
about

Efficiency

Object-Oriented
Programming

Interfaces and
Classes

Inheritance

Objects with
Mutable State

Efficiency,
Part 2

Generalization

• The goal of generalization is to avoid having to
repeat code, whether the code is identical or
slightly different.

• In this sequence of lessons, you will learn how
to do this, starting with very simple situations,
then covering more and more complex
situations.

3

Slogans for Generalization

• Never write the same code twice

– Don’t repeat yourself

– Single Point of Control

• fix each bug only once

• easier maintenance, modification

• Copy and Paste is bad practice

• Also known as: Refactoring

4

Module Outline

• Generalizing a constant to a variable

• Generalizing over functions

• Using prepackaged generalizations: map, foldr,
etc.

5

Learning Objectives for this Lesson

• By the end of this lesson, you should be able
to

– recognize when two functions differ only by a
constant

– rewrite the two functions using a single more
general function

– test your new function definitions

6

Imagine the following:

• Your boss comes to you and asks you to write
a function called find-dog.

• You follow the design recipe, write the code,
and test it.

• Your boss and you are both happy.

• Here’s what you wrote:

7

find-dog

;; find-dog : StringList -> Boolean

;; GIVEN: a list of strings

;; RETURNS: true iff "dog" is in the given list.

;; STRATEGY: Use template for StringList on los

(define (find-dog los)

(cond

[(empty? los) false]

[else (or

(string=? (first los) "dog")

(find-dog (rest los)))]))

(check-equal? (find-dog (list "cat" "dog" "weasel")) true)

(check-equal? (find-dog (list "cat" "elephant" "weasel"))
false)

8

The story continues

• The next morning, your boss comes to you
and asks you to write find-cat.

• You follow the design recipe, write the code,
and test it.

• Here’s what you wrote:

9

find-cat

;; find-cat : StringList -> Boolean

;; GIVEN: a list of strings

;; RETURNS: true iff "cat" is in the given list.

;; STRATEGY: Use template for StringList on los

(define (find-cat los)

(cond

[(empty? los) false]

[else (or

(string=? (first los) "cat")

(find-cat (rest los)))]))

(check-equal? (find-cat (list "cat" "dog" "weasel")) true)

(check-equal? (find-cat (list "elephant" "weasel")) false)

10

A lot of repeated work there!

• Your boss is happy, but you are less happy;
what if the next day, he asks you to write
find-elephant?

• You feel like you are wasting a lot of time!

• Let’s see just how alike these functions were.

11

These functions are very similar:

(define (find-dog los)

(cond

[(empty? los) false]

[else

(or

(string=?

(first los)

"dog")

(find-dog

(rest los)))]))

(define (find-cat los)

(cond

[(empty? los) false]

[else

(or

(string=?

(first los)

"cat")

(find-cat

(rest los)))]))

12

The only differences between the functions are
their names, and the fact that one refers to
“dog” and the other refers to “cat”.

So generalize them by adding an
argument

;; find-animal : StringList String -> Boolean
;; returns true iff the given string is in the given list of strings.

(define (find-animal los str)
(cond
[(empty? los) false]
[else (or

(string=? (first los) str)
(find-animal (rest los) str))]))

(check-expect
(find-animal (list "cat" "elephant" "weasel") "elephant")
true)

(check-expect
(find-animal (list "cat" "elephant" "weasel") "beaver")
false)

13
Nothing mysterious here!

What did we do here?

• If two functions differ only in a few places, add
extra arguments for those places.

• find-dog and find-cat can be generalized to
get find-animal. We replace a constant, like
"dog" or "cat" with an argument, here str.

• Moving common code to a single function
with some extra arguments is what is often
called "refactoring".

14

Generalization

• Both functions were special cases of a more
general function.

• The more general function takes extra
arguments that express the differences.

• The arguments "specialize" the function.

• Must make sure that we can to specialize back
to our original functions:

15

Confirm that the original functions can
still be expressed.

(define (find-dog los)

(find-animal los "dog"))

(define (find-cat los)

(find-animal los "cat"))

(define (find-elephant los)

(find-animal los "elephant"))

16

find-elephant is
now a one-liner. Yay!

What's the strategy?

;; STRATEGY: Use template for StringList on los

(define (find-animal los str)

(cond

[(empty? los) false]

[else (or

(string=? (first los) str)

(find-animal (rest los) str))]))

;; STRATEGY: Call a more general function

(define (find-dog los)

(find-animal los "dog"))

17

We could describe this as
"call a simpler function",

but it seems more
accurate to describe this
as calling a more general

function

In this function we are
still using the template

Don't get all anxious
about the difference.

How to test the new definitions

• To test the new definitions, comment out the old
definitions. This can be accomplished by using the
Racket menu item for "comment out with semicolons".

• An entire parenthesized expression can also be
commented out by prefixing it with #; (see the Help
Desk for details).

• Do NOT use the Racket menu item "comment out in a
box"—the result will be that your Racket file is
converted to a form that is no longer plain text, and
will not be viewable with ordinary tools (text editors,
web browsers, etc.).

18

Your file should now look like this:

#;(define (find-dog los) ...)

#;(define (find-cat los) ...)

(define (find-animal los str) ...)

(define (find-dog los)

(find-animal los "dog"))

19

The old definitions are commented out

find-dog now refers to the new definition

Now your old tests should work
WITHOUT CHANGE

(check-equal?

(find-dog (list "cat" "dog" "weasel"))

true)

(check-equal?

(find-dog (list "cat" "elephant" "weasel"))

false)

(check-equal?

(find-cat (list "cat" "dog" "weasel"))

true)

(check-equal?

(find-cat (list "elephant" "weasel"))

false)

20

The new definitions of find-dog and
find-cat are the only ones visible, so
these are now testing the new
definitions.

Another Example: Pizza!
;; Data Definitions:

;; A Topping is a String.

;; A Pizza is represented as a list of Toppings
;; INTERP: a pizza is a list of toppings, listed from top to bottom

;; pizza-fn : Pizza -> ??
;; (define (pizza-fn p)
;; (cond
;; [(empty? p) ...]
;; [else (... (first p)
;; (pizza-fn (rest p)))]))

;; Examples:
(define plain-pizza empty)
(define cheese-pizza (list "cheese"))
(define anchovies-cheese-pizza (list "anchovies" "cheese"))

21

The toppings are listed in a certain order,
so we must explain the order in the
interpretation.

replace-all-anchovies-with-onions

;; replace-all-anchovies-with-onions
;; : Pizza -> Pizza
;; GIVEN: a pizza
;; RETURNS: a pizza like the given pizza, but with
;; onions in place of each layer of anchovies
(define (replace-all-anchovies-with-onions p)
(cond
[(empty? p) empty]
[else (if (string=? (first p) "anchovies")

(cons "onions"
(replace-all-anchovies-with-onions

(rest p)))
(cons (first p)
(replace-all-anchovies-with-onions

(rest p))))]))

22

Opportunities for Generalization

We can generalize over onions to get replace-
all-anchovies.

;; replace-all-anchovies

;; : Pizza Topping -> Pizza

;; GIVEN: A pizza and a topping

;; RETURNS: a pizza like the given pizza, but

;; with all anchovies replaced by the given

;; topping.

23

Opportunities for Generalization

Generalize over anchovies to get replace-
topping.

;; replace-topping

;; : Pizza Topping Topping -> Pizza

;; GIVEN: a pizza and two toppings

;; RETURNS: a pizza like the given one, but

;; with all instances of the first topping

;; replaced by the second one.

24

Summary

• Functions will sometimes differ only in choice of
data items.

• Functions can be generalized by adding new
argument(s) for the differences.

• No magic here, but we will do the same thing in
more interesting ways in the following lessons.

• Confirm the original functions work before
generalizing.

• Test functions by renaming the originals and
running the same tests.

25

Next Steps

• Study 06-1-1-find-dog.rkt and 06-1-2-pizza.rkt
in the examples folder.

• If you have questions about this lesson, ask
them on the Discussion Board

• Do Guided Practice 6.1

• Go on to the next lesson.

26

