
Trees

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 5.1

1
© Mitchell Wand, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Module 05

2

Basic Principles

Designing Data

Designing
Functions

Designing
Systems

Tools and
Techniques

Computing with
Lists

Computing with
Trees and Graphs

Computing with
Higher-Order

Functions

Designing with
Invariants

Thinking about
Efficiency

Object-Oriented
Programming

Interfaces and
Classes

Inheritance

Objects with
Mutable State

Efficiency, Part 2

Module Introduction

• In this module we will learn about a number of
topics having to do with trees and their
representation.

• We will learn about

– branching structures, such as trees

– mutually recursive data definitions

– S-expressions

– How to represent trees and related structures in Java

– What makes the observer template work in general.

3

Lesson Introduction

• Many examples of information have a natural
structure which is not a sequence, but is
rather a tree, which you should have learned
about in your data structures course.

• In this lesson, we'll study how to apply the
Design Recipe to trees.

4

Learning Objectives

• At the end of this lesson you should be able
to:

– Write a data definition for tree-structured
information

– Write functions that manipulate that data, using
the observer template

5

Binary Trees: Data Definition

;; A Binary Tree is represented as a BinTree, which is either:
;; (make-leaf datum)
;; (make-node lson rson)

;; INTERPRETATON:
;; datum : Real some real data
;; lson, rson : BinTree the left and right sons of this node

;; IMPLEMENTATION:
(define-struct leaf (datum))
(define-struct node (lson rson))

;; CONSTRUCTOR TEMPLATES:
;; -- (make-leaf Number)
;; -- (make-node BinTree BinTree)

6

Observer Template to follow...

There are many ways to define
binary trees. We choose this one
because it is clear and simple.

This definition is self-referential
(recursive)

;; A BinTree is either

;; -- (make-leaf Number)

;; -- (make-node BinTree BinTree)

7

Observer Template

tree-fn : BinTree -> ???

(define (tree-fn t)

(cond

[(leaf? t) (... (leaf-datum t))]

[else (...

(tree-fn (node-lson t))

(tree-fn (node-rson t)))]))

8

Self-reference in the data definition
leads to self-reference in the template;
Self-reference in the template leads to
self-reference in the code.

Here's the template for this data
definition. Observe that we have
two self-references in the
template, corresponding to the two
self-references in the data
definition.

Remember: The Shape of the Program
Follows the Shape of the Data

9

Data Hierarchy (a
BinTree is either leaf
data or has two
components which
are BinTrees

Call Tree (tree-fn
either calls a
function on the leaf
data, or it calls itself
twice.)

is-component-ofBinTree

leaf data

callstree-fn

leaf data
function

The template questions

tree-fn : Tree -> ???

(define (tree-fn t)

(cond

[(leaf? t) (... (leaf-datum t))]

[else (...

(tree-fn (node-lson t))

(tree-fn (node-rson t)))]))

10

What’s the answer
for a leaf?

If you knew the answers for the 2
sons, how could you find the answer
for the whole tree?

And here are the template
questions. When we write a
function using the template,
we fill in the template with the
answers to these questions.

leaf-sum

leaf-sum : Tree -> Number

(define (leaf-sum t)

(cond

[(leaf? t) (leaf-datum t)]

[else (+

(leaf-sum (node-lson t))

(leaf-sum (node-rson t)))]))

11

What’s the answer
for a leaf?

If you knew the answers for the 2
sons, how could you find the answer
for the whole tree?

Let’s see how the
template questions help
us define some functions
that observe binary trees.

leaf-max

leaf-max : Tree -> Number

(define (leaf-max t)

(cond

[(leaf? t) (leaf-datum t)]

[else (max

(leaf-max (node-lson t))

(leaf-max (node-rson t)))]))

12

What’s the answer
for a leaf?

If you knew the answers for the 2
sons, how could you find the answer

for the whole tree?

leaf-min

leaf-min : Tree -> Number

(define (leaf-min t)

(cond

[(leaf? t) (leaf-datum t)]

[else (min

(leaf-min (node-lson t))

(leaf-min (node-rson t)))]))

13

What’s the answer
for a leaf?

If you knew the answers for the 2
sons, how could you find the answer

for the whole tree?

Summary

• You should now be able to:

– Write a data definition for tree-structured
information

– Write a template for tree-structured information

– Write functions that manipulate that data, using
the template

14

Next Steps

• Study the file 05-1-trees.rkt in the Examples
folder.

• If you have questions about this lesson, ask
them on the Discussion Board

• Do Guided Practice 5.1

• Go on to the next lesson

15

