Lists of Structures

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 4.3

: © Mitchell Wand, 2012-2017
TECT This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Introduction

* Lists of structures occur all the time
* Programming with these is no different:

— write down the data definition, including
interpretation and template

— Follow the Recipe!

Learning Objectives

* At the end of this lesson you should be able
to:
— write down a template for lists of compound data

— use the template to write simple functions on lists
of compound data

Programming with lists of structures

* Programming with lists of structures is no

different from programming with lists of
scalars, except that we make one small change

in the recipe for templates

Example: modeling a bookstore

_et's imagine a program to help manage a
pookstore.

_et’s build a simple model of the inventory of
a bookstore.

Step 1: Data Design

* First, we'll give data definitions for the various
guantities we need to represent:

Preliminary Data Definitions

;5 An Author is represented as a String (any string will do)

We might refine this definition later, eg keep track of
FirstName, LastName, etc.

;55 A Title is represented as a String (any string will do)

55 An International Standard Book Number (ISBN) is represented

35 as a positive integer (PosInt).
Actually, an ISBN is a sequence of exactly 13 digits, divided into four
fields (see
https://en.wikipedia.org/wiki/International_Standard_Book_Number).
We don't need to represent all this information, so we will simply
represent it as a Poslint.

;5 A DollarAmount is represented as an integer.

;3 INTERP: the amount in USD*100.

;5 eg: the integer 3679 represents the dollar amount $36.79
55 A DollarAmount may be negative.

BookStatus

55 A BookStatus is represented as
55 (book-status isbn author title cost price on-hand)

55 INTERP:

33 isbn : ISBN -- the ISBN of the book

;3 author : Author -- the book's author

;3 title : Title -- the book's title

;33 cost : DollarAmount -- the wholesale cost of the book (how much
HH the bookstore paid for each copy of the
55 book

;5 price : DollarAmount -- the price of the book (how much the

HE bookstore charges a customer for the

HH book)

55 on-hand: NonNegInt -- the number of copies of the book that are
HR on hand in the bookstore)

Note that we are not modelling a Book

(that’s something that exists on a shelf

somewhere ©). We are modelling the
status of all copies of this book.

BookStatus (cont’d)

55 IMPLEMENTATION:
(define-struct book-status (isbn author title cost price on-hand))

55 CONSTRUCTOR TEMPLATE:
55 (make-book-status ISBN Author Title DollarAmount DollarAmount NonNegInt)

55 OBSERVER TEMPLATE:
;3 book-status-fn : BookStatus -> ??
(define (book-status-fn b)

(...
(book-status-isbn b)
(book-status-author b)
(book-status-title b)
(book-status-cost b)
(book-status-price b)
(book-status-on-hand b)))

Inventory

[]

B
o o
B

o o
B

[]

)
[]

)
o o
)
o o
B
e o
B
e o
B
e o
B
o o
)

o o
)

; An Inventory is represented as a list of

BookStatus, in increasing ISBN order, with at
most one entry per ISBN.

; CONSTRUCTOR TEMPLATES:
; empty

(cons bs inv)

-- WHERE
bs 1is a BookStatus
inv is an Inventory
and

(bookstatus-isbn bs) is less than the ISBN of

any book in inv.

10

Inventory (cont’d)

55 OBSERVER TEMPLATE:

55 inv-fn : Inventory -> ??
(define (inv-fn inv)
(cond
[(empty? inv) ...]
[else (...
(first inv)
(inv-fn (rest inv)))]))

11

Inventory (cont’d)

Since (first inv) is a BookStatus, it would
(define (inv-fn inv) also be OK to write the observer template
like this. These templates are there to

(Cond serve as a guide for you, so we are going
[(empty? inv) ...] to try not to be too picky about them.
[else (...

(book-status-fn (first inv))
(inv-fn (rest inv)))]))

But you must put the recursive call to
inv-fn in your observer template.

12

Remember: The Shape of the Program
Follows the Shape of the Data

Inventory is-componentfof inv-fn calls

BookStatus book-
status-fn
Data Hierarchy (a
non-empty inventory Call Tree (inv-fn
contains a calls itself and
BookStatus and book-status-fn)

another Inventory)

13

Example function: inventory-authors

55 inventory-authors : Inventory -> AuthorList
55 GIVEN: An Inventory
33 RETURNS: A list of the all the authors of the books in the
;5 inventory. Repetitions are allowed. Books with no copies in stock
;3 are included. The authors may appear in any order.
53 EXAMPLE: (inventory-authors invl)
= (list "Felleisen" "Wand" "Shakespeare
55 STRATEGY: Use observer template for Inventory

Shakespeare™")

(define (inventory-authors inv)
(cond
[(empty? inv) empty]
[else (cons
(book-status-author (first inv))
(inventory-authors (rest inv)))]))

14

An Inventory— but which inventory?

e So far we've decided how to represent an
Inventory.

* But what store is it the inventory of?
 And what date does it represent?

15

BookstoreState

;5 A Date is represented as a

;3 A BookstoreState is represented as a (bookstore-state date stock)
55 INTERP:

;5 date : Date -- the date we are modelling
;3 stock : Inventory -- the inventory of the bookstore as of 9am ET on
HH the given date.

55 IMPLEMENTATION:

(define-struct bookstore-state (date stock))

55 CONSTRUCTOR TEMPLATE Now that we have a history of the
55 (make-bookstore-state Date Inventory) inventory, we can do more things,
;3 OBSERVER TEMPLATE like track the value of the
;5 state-fn : BookstoreState -> ?? inventory over time, compare the
(define (state-fn bss) | f book
(... (bookstore-state-date bss) SIS CIF SIS DIiehs R Solinls
(bookstore-state-stock bss))) time period, etc., etc.

16

Module Summary: Self-Referential or
Recursive Information

* Represent arbitrary-sized information using a
self-referential (or recursive) data definition.

e Self-reference in the data definition leads to
self-reference in the observer template.

* Self-reference in the observer template leads
to self-reference in the code.

* Writing functions on this kind of data is easy:
just Follow The Recipe!

e But get the template right!

17

Summary

* At the end of this lesson you should be able
to:
— write down a template for lists of compound data

— use the template to write simple functions on lists
of compound data

 The Guided Practices will give you some
exercise in doing this.

18

Next Steps

Study 04-2-books.rkt in the Examples file

If you have questions about this lesson, ask
them on the Discussion Board

Do Guided Practice 4.4
Go on to the next lesson

