
The Observer Template for List
Data

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 4.2

1
© Mitchell Wand, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Key Points for Lesson 4.2

At the end of this lesson you should be able to:

• Write down the observer template for list
data.

• Use the observer template for list data to
write simple functions on lists.

2

Review: The Constructor Templates for
XList

A XList is one of

-- empty

-- (cons X XList)

3

Here are the constructor
templates for a list of X's.
This means that any XList
must look like one of these
two forms

This definition is self-referential

A XList is one of

-- empty

-- (cons X XList)

4

Here are the constructor
templates for a list of X's. This
means that any XList must look
like one of these two forms

Observer Template (1st attempt)

;; xlist-fn: XList -> ??

(define (xlist-fn xs)

(cond

[(empty? xs) ...]

[else (... (first xs)

(rest xs))]))

5

But we should do something cleverer!

• The constructor template was self-referential

• But this wasn't reflected in our observer
template.

• (rest xs) is an XList, so we should expect to call
xlist-fn recursively on it.

– This is usually (though not always) what you want.

6

The Observer Template for List data

;; xlist-fn : XList -> ??

(define (xlist-fn xs)

(cond

[(empty? xs) ...]

[else (... (first xs)

(xlist-fn (rest xs)))]))

7

Observe that xs is non-empty
when first and rest are

called, so their contracts are
satisfied.

Here we add a recursive call to list-fn
on (rest xs) .

This template is self-referential

;; list-fn : XList -> ??

(define (xlist-fn xs)

(cond

[(empty? xs) ...]

[else (... (first xs)

(xlist-fn (rest xs)))]))

8

New Slogan: Self-reference in the
constructor template leads to self-
reference in the observer template.

(rest xs) is a
XList, so call xlist-
fn on it

Remember: The Shape of the Program
Follows the Shape of the Data

9

Data Hierarchy (a
non-empty Xlist
contains another
Xlist)

Call Tree (xlist-fn
calls itself on the
component)

xlist-fn

xlist-fn

Xlist

Xlist

is-component-of calls

or, folding in the recursion....:

is-component-of

Remember: The Shape of the Program
Follows the Shape of the Data

10

Data Hierarchy (a
non-empty Xlist
contains another
Xlist)

Call Tree (xlist-fn
calls itself on the
component)

xlist-fnXlist calls

From Observer Template to Function
Definition

• The observer template has two blanks in it.

• Often we can get our function definition by
simply filling in the blanks.

• Each blank corresponds to a question

• It's the same question for every function:

11

Let’s do some examples

• We’ll be working with the list template a lot,
so let’s do some examples to illustrate how it
goes.

• We’ll do 5 examples, starting with one that’s
very simple and working up to more
complicated ones.

12

;; xlist-fn : XList -> ??

(define (xlist-fn xs)

(cond

[(empty? xs) ...]

[else (... (first xs)

(xlist-fn (rest xs)))]))

Here are the questions for the XList
template:

13

What's the answer for
the empty list?

If we knew the first of the list, and
the answer for the rest of the list,

how could we combine them to get
the answer for the whole list?

Data Definitions

;; A NumberList is represented as a list of Number.

;; CONSTRUCTOR TEMPLATE AND INTERPRETATION
;; empty -- the empty sequence
;; (cons n ns)
;; WHERE:
;; n is a Number -- the first number
;; in the sequence
;; ns is a NumberList -- the rest of the
;; numbers in the sequence

;; OBSERVER TEMPLATE:
;; nl-fn : NumberList -> ??
(define (nl-fn lst)

(cond
[(empty? lst) ...]
[else (... (first lst)

(nl-fn (rest lst)))]))

14

Example 1: nl-length

nl-length : NumberList -> Number

GIVEN: a NumberList

RETURNS: its length

EXAMPLES:

(nl-length empty) = 0

(nl-length (cons 11 empty)) = 1

(nl-length (cons 33 (cons 11 empty))) = 2

STRATEGY: Use template for NumberList on lst

15

We write "nl-" as an
abbreviation for

NumberList

Example 1: nl-length

;; nl-length : NumberList -> Number

;; Given a NumberList, find its length

(define (nl-length lst)

(cond

[(empty? lst) ...]

[else (... (first lst)

(nl-length (rest lst)))]))

16

We start by copying the
template and changing

the name of the
function to nl-length.

Example 1: nl-length

;; nl-length : NumberList -> Number

;; Given a NumberList, find its length

(define (nl-length lst)

(cond

[(empty? lst) 0]

[else (+ 1 (first lst)

(nl-length (rest lst)))]))

17

What's the answer for
the empty list?

If we knew the first of the list, and
the answer for the rest of the list,

how could we combine them to get
the answer for the whole list?

Next, we answer
the template

questions.

;; nl-length : NumberList -> Number

;; Given a NumberList, find its length

(define (nl-length lst)

(cond

[(empty? lst) ...]

[else (... (first lst)

(nl-length (rest lst)))]))

The code is self-referential, too

;; nl-length : NumberList -> Number

;; Given a NumberList, find its length

(define (nl-length lst)

(cond

[(empty? lst) 0]

[else (+ 1 (first lst)

(nl-length (rest lst)))]))

18

Self-reference in the constructor template leads
to self-reference in the observer template;
Self-reference in the observer template leads to
self-reference in the code.

Let's watch this work

(nl-length (cons 11 (cons 22 (cons 33 empty))))

= (+ 1 (nl-length (cons 22 (cons 33 empty))))

= (+ 1 (+ 1 (nl-length (cons 33 empty))))

= (+ 1 (+ 1 (+ 1 (nl-length empty))))

= (+ 1 (+ 1 (+ 1 0)))

= (+ 1 (+ 1 1))

= (+ 1 2)

= 3

19

See how each recursive
call to nl-length works on
a shorter and shorter list.

Example 2: nl-sum

nl-sum : NumberList -> Number

GIVEN: a list of numbers

RETURNS: the sum of the numbers in the list

EXAMPLES:

(nl-sum empty) = 0

(nl-sum (cons 11 empty)) = 11

(nl-sum (cons 33 (cons 11 empty))) = 44

(nl-sum (cons 10 (cons 20 (cons 3 empty)))) = 33

STRATEGY: Use template for NumberList on lst

20

Here's another
example

Example 2: nl-sum

;; nl-sum : NumberList -> Number

(define (nl-sum lst)

(cond

[(empty? lst) ...]

[else (... (first lst)

(nl-sum (rest lst)))]))

21

What's the answer for
the empty list?

If we knew the first of the list, and
the answer for the rest of the list,

how could we combine them to get
the answer for the whole list?

;; nl-sum : NumberList -> Number

(define (nl-sum lst)

(cond

[(empty? lst) 0]

[else (+ (first lst)

(nl-sum (rest lst)))]))

Watch this work:

(nl-sum (cons 11 (cons 22 (cons 33 empty))))

= (+ 11 (nl-sum (cons 22 (cons 33 empty))))

= (+ 11 (+ 22 (nl-sum (cons 33 empty))))

= (+ 11 (+ 22 (+ 33 (nl-sum empty))))

= (+ 11 (+ 22 (+ 33 0)))

= (+ 11 (+ 22 33))

= (+ 11 55)

= 66

22

Example 3: double-all

double-all : NumberList -> NumberList

GIVEN: a NumberList,

RETURNS: a sequence just like the original, but

with each number doubled

EXAMPLES:

(double-all empty) = empty

(double-all (cons 12 empty))

= (cons 24 empty)

(double-all (cons 33 (cons 12 empty)))

= (cons 66 (cons 24 empty))

STRATEGY: Use template for NumberList on lst

23

Example 3: double-all
;; double-all : NumberList -> NumberList

(define (double-all lst)

(cond

[(empty? lst) ...]

[else (... (first lst)

(double-all (rest lst)))]))

24

What's the answer for
the empty list?

If we knew the first of the list, and
the answer for the rest of the list,

how could we combine them to get
the answer for the whole list?

;; double-all : NumberList -> NumberList

(define (double-all lst)

(cond

[(empty? lst) empty]

[else (cons (* 2 (first lst))

(double-all (rest lst)))]))

Watch this work:

(double-all (cons 12 (cons 22 (cons 33 empty))))

= (cons 24 (double-all (cons 22 (cons 33 empty))))

= (cons 24 (cons 44 (double-all (cons 33 empty))))

= (cons 24 (cons 44 (cons 66 (double-all empty))))

= (cons 24 (cons 44 (cons 66 empty)))

25

Example 4: remove-evens

• For this one, we'll need to specialize to
integers.

An IntList is one of

-- empty

-- (cons Integer IntList)

26

Example 4: remove-evens

remove-evens : IntList -> IntList

GIVEN: a IntList,

RETURNS: a list just like the original, but with all

the even numbers removed

EXAMPLES:

(remove-evens empty) = empty

(remove-evens (cons 12 empty)) = empty

(define list-22-11-13-46-7

(cons 22 (cons 11 (cons 13 (cons 46 (cons 7 empty))))))

(remove-evens list-22-11-13-46-7)

= (cons 11 (cons 13 (cons 7 empty)))

STRATEGY: Use observer template for IntList

27

remove-evens is not a perfect
name for this function, since it’s a
verb rather than a noun.

remove-evens : IntList -> IntList

(define (remove-evens lst)

(cond

[(empty? lst) empty]

[else (if (even? (first lst))

(remove-evens (rest lst))

(cons (first lst)

(remove-evens (rest lst))))]))

Example 4: remove-evens

remove-evens : IntList -> IntList

(define (remove-evens lst)

(cond

[(empty? lst) ...]

[else (... (first lst)

(remove-evens (rest lst)))]))

28

What's the answer for
the empty list?

If we knew the first of the list, and
the answer for the rest of the list,

how could we combine them to get
the answer for the whole list?

Example 4: remove-evens

remove-evens : IntList -> IntList

(define (remove-evens lst)

(cond

[(empty? lst) empty]

[else (if (even? (first lst))

(remove-evens (rest lst))

(cons (first lst)

(remove-evens (rest lst))))]))

29

This code seems a
little complicated.
Could we make it
more readable?

Example 4: remove-evens

remove-evens : IntList -> IntList

(define (remove-evens lst)

(cond

[(empty? lst) empty]

[(even? (first lst))

(remove-evens (rest lst))]

[else (cons (first lst)

(remove-evens (rest lst)))]))

30

Here’s a clearer version, which is also
acceptable for this class. The template is

just a way for you to get started writing your
function definition. It's OK to vary it a little

if it leads to more readable code.

Example 5: remove-first-even

remove-first-even : IntList -> IntList

GIVEN: a IntList,

RETURNS: a list just like the original, but with all the

even numbers removed

EXAMPLES:

(remove-first-even empty) = empty

(remove-first-even (cons 12 empty)) = empty

(define list-22-11-13-46-7

(cons 22 (cons 11 (cons 13 (cons 46 (cons 7 empty))))))

(remove-first-even list-22-11-13-46-7)

= (cons 11 (cons 13 (cons (cons 46 (cons 7 empty))))))

STRATEGY: Use template for IntList on lst

31

Why is this not a good set of
examples?

Answer: None of them show what happens
when the first element of the list is odd

remove-first-even : IntList -> IntList

(define (remove-first-even lst)

(cond

[(empty? lst) empty]

[else (if (even? (first lst))

(rest lst)

(cons (first lst)

(remove-first-even (rest lst))))]))

remove-first-even : IntList -> IntList

(define (remove-first-even lst)

(cond

[(empty? lst) ...]

[else (... (first lst)

(remove-first-even (rest lst)))]))

Example 5: remove-first-even

32

What's the answer for
the empty list?

remove-first-even : IntList -> IntList

(define (remove-first-even lst)

(cond

[(empty? lst) empty]

[else (... (first lst)

(remove-first-even (rest lst)))]))

If we knew the first of the list, and
the answer for the rest of the list,

how could we combine them to get
the answer for the whole list?

This is OK: you don’t
have to recur if you

don’t need to.

Example 5: remove-first-even

33

remove-first-even : IntList -> IntList

(define (remove-first-even lst)

(cond

[(empty? lst) empty]

[(even? (first lst))

(rest lst)]

[(cons (first lst)

(remove-first-even (rest lst)))]))

Again, here's another version of
remove-first-even that is acceptable.

It's OK to vary the template, but you'll
be less likely to make mistakes if you

stick close to the template.

Example 6: insert

;; DATA DEFINITION

;; A SortedIntList is an IntList that is in ascending

;; order.

34

This assumes that we already
have a definition for IntList.

Example 6: insert

;; insert : Integer SortedIntList -> SortedIntList

;; GIVEN: An integer and a sorted sequence of integers

;; RETURNS: A new SortedIntList just like the

;; original, but with the new integer inserted.

;; EXAMPLES:

;; (insert 3 empty) = (list 3)

;; (insert 3 (list 5 6)) = (list 3 5 6)

;; (insert 3 (list -1 1 5 6))

;; = (list -1 1 3 5 6)

;; STRATEGY: Use observer template for

;; SortedIntList

35

Function Definition for insert

(define (insert n seq)

(cond

[(empty? seq) (cons n empty)]

[(< n (first seq)) (cons n seq)]

[else (cons (first seq)

(insert n (rest seq)))]))

36

Watch this work:

(insert 27 (cons 11 (cons 22 (cons 33 empty))))

= (cons 11 (insert 27 (cons 22 (cons 33 empty))))

= (cons 11 (cons 22 (insert 27 (cons 33 empty))))

= (cons 11 (cons 22 (cons 27 (cons 33 empty))))

37

Observe that this computation may take
time proportional to the length of the

sequence (in this case, 3).

Example 7: Insertion Sort

;; mysort : IntList -> SortedIntList
;; GIVEN: An integer sequence
;; RETURNS: The same sequence,
;; but sorted by <= .
;; EXAMPLES:
;; (mysort empty) = empty
;; (mysort (list 3)) = (list 3)
;; (mysort (list 2 1 4)) = (list 1 2 4)
;; (mysort (list 2 1 4 2)) = (list 1 2 2 4)
;; STRATEGY: Use observer template for
;; IntList

38

sort is predefined in ISL, so
we need to use a different

name.

Function definition for mysort

(define (mysort ints)

(cond

[(empty? ints) empty]

[else (insert (first ints)

(mysort (rest ints)))]))

39

The second argument to insert is always
supposed to be a SortedIntList. Why is
this true? (Hint: look at the contract for
mysort.)

Watch this work:

(mysort (list 2 1 4 2))

= (insert 2 (mysort (list 1 4 2)))

= (insert 2 (insert 1 (mysort (list 4 2))))

= (insert 2 (insert 1 (insert 4 (mysort (list 2)))))

= (insert 2 (insert 1 (insert 4 (insert 2 (mysort empty)))))

= (insert 2 (insert 1 (insert 4 (insert 2 empty))))

= (insert 2 (insert 1 (insert 4 (list 2))))

= (insert 2 (insert 1 (list 2 4)))

= (insert 2 (list 1 2 4)))

= (list 1 2 2 4))

40

How many steps does this take?

• If you call mysort on a list of length 𝑁, it will take
𝑁 steps to get to the end, leaving 𝑁 calls to insert
still to be executed.

• Each call to insert takes a number of steps
proportional to the length of its argument, which
again can be of length 𝑁.

• There are 𝑁 calls to insert, so the whole
computation takes time proportional to 𝑁2.

• This can all be made precise; you should have
learned this in your undergraduate algorithms
course.

41

Summary

• You should now be able to:

– write down the template for a list data definition

– use structural decomposition to define simple
functions on lists

42

Next Steps

• Study 04-1-lists.rkt in the Examples folder.

• If you have questions about this lesson, ask
them on the Discussion Board

• Go on to the next lesson

43

