
Two Draggable Cats

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 3.4

1
© Mitchell Wand, 2012-2014
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Introduction and Learning Objectives

• In this lesson, you will learn how to build more
complicated worlds with more than one
object.

• By the end of this lesson you should be able to

– Write more complex data definitions, representing
information in appropriate places.

– Use templates to guide the development of
programs incorporating multiple data definitions.

Requirements

• Like draggable-cat, except:

• We have 2 cats in the scene

• Each cat can be individually selected, as in
draggable-cat

• Space pauses or unpauses the entire
animation

• Demo: two-draggable-cats:
http://www.youtube.com/watch?v=XvODwv7i
vrA

http://www.youtube.com/watch?v=XvODwv7ivrA

two-draggable-cats: demo

Note: I've added a bunch of tests since this video was made. Study them!YouTube link

https://www.youtube.com/watch?v=XvODwv7ivrA

Information Analysis: World

• The world has two cats and a paused?

– it is the whole world that is paused or not

Data Definitions: World

;; REPRESENTATION:
;; A World is represented as a (make-world cat1 cat2 paused?)
;; INTERPRETATION:
;; cat1, cat2 : Cat the two cats in the world
;; paused? : Boolean is the world paused?

;; IMPLEMENTATION:
(define-struct world (cat1 cat2 paused?))

;; CONSTRCTOR TEMPLATE:
;; (make-world Cat Cat Boolean)

;; OBSERVER TEMPLATE:
;; world-fn : World -> ??
(define (world-fn w)
(... (world-cat1 w) (world-cat2 w) (world-paused? w)))

Information Analysis: Cat

• Each cat has x-pos, y-pos, and selected?

• What about paused?

– cats aren't individually paused

– it's the whole thing that is paused or not.

Data Definitions: Cat

;; REPRESENTATION:
;; A Cat is represented as (make-cat x-pos y-pos selected?)
;; INTERPRETATION:
;; x-pos, y-pos : Integer the position of the center of the cat
;; in the scene
;; selected? describes whether or not the cat is selected.

;; IMPLEMENTATION
(define-struct cat (x-pos y-pos selected?))

;; CONSTRUCTOR TEMPLATE:
;; (make-cat Integer Integer Boolean)

;; OBSERVER TEMPLATE:
;; template:
;; cat-fn : Cat -> ??
(define (cat-fn w)
(... (cat-x-pos w)

(cat-y-pos w)
(cat-selected? w)))

Data Design Principles

• Every value of the information should be
represented by some value of the data
– otherwise, we lose immediately!

• Every value of the data should represent some
value of the information
– no meaningless or nonsensical combinations

– if each cat had a paused? field, then what would it
mean for one cat to be paused and the other not?

– Is it possible for one cat to be paused and the other
not?

Follow the template!

• If your world has some cats in it, then your
world function will just call a cat function on
each cat.

• The structure of your program will follow the
structure of your data definitions.

• Let's watch this at work:

world-after-tick

;; world-after-tick : World -> World
;; RETURNS: the world that should follow the
;; given world after a tick
;; STRATEGY: Cases on whether the world is paused

(define (world-after-tick w)
(if (world-paused? w)

w
(make-world

(cat-after-tick (world-cat1 w))
(cat-after-tick (world-cat2 w))
false)))

(world-cat1 w) is a cat, so
we just call a cat function

on it

Remember: The Shape of the Program
Follows the Shape of the Data

12

Data Hierarchy (the
world contains 2 cats)

Call Tree (the arrow
goes from caller to
callee)

world
function

cat
function

World

Cat

cat-after-tick

;; cat-after-tick : Cat -> Cat

;; RETURNS: the state of the given cat after a tick in an

;; unpaused world.

;; EXAMPLES:

;; cat selected

;; (cat-after-tick selected-cat-at-20) = selected-cat-at-20

;; cat paused:

;; (cat-after-tick unselected-cat-at-20) = unselected-cat-at-28

;; STRATEGY: Cases on whether the cat is selected, then use

;; constructor template for cat.

;; function definition on next slide It would be OK to write
just "Use template on
c"

cat-after-tick definition

(define (cat-after-tick c)
(if (cat-selected? c)

c
(make-cat

(cat-x-pos c)
(+ (cat-y-pos c) CATSPEED)
(cat-selected? c))))

world-to-scene

• world-to-scene follows the same pattern: the
world consists of two cats, so we call two cat
functions.

• Both cats have to appear in the same scene,
so we will have to be a little clever about our
cat function.

world-to-scene

;; world-to-scene : World -> Scene
;; RETURNS: a Scene that portrays the
;; given world.
;; STRATEGY: Use template for World on w
(define (world-to-scene w)

(place-cat
(world-cat1 w)
(place-cat

(world-cat2 w)
EMPTY-CANVAS)))

The pieces are cats, so
create a wishlist

function to place a cat
on a scene

place-cat

;; place-cat : Cat Scene -> Scene
;; returns a scene like the given one, but with
;; the given cat painted on it.
;; strategy : Use template for Cat on c
(define (place-cat c s)
(place-image

CAT-IMAGE
(cat-x-pos c) (cat-y-pos c)
s))

The Structure of the Program Follows
the Structure of the Data (1)

• Let's look again at the structure of our
program.

• If we draw the call graph of our program
(showing which functions call which), we can
see that the call graph mirrors the structure of
the data

• The world contains two cats, so world-after-
tick calls cat-after-tick (twice).

• Let' draw some pictures:

18

The Structure of the Program Follows
the Structure of the Data (2)

19

World

Cat

world-after-
tick

cat-after-tick

world-to-scene

place-cat

world-after-
mouse-event

cat-after-
mouse-event

Data Definitions Call Graphs

The Structure of the Program Follows
the Structure of the Data (3)

20

World

Cat

world-after-
mouse-event

cat-after-
mouse-event

Mouse Event

“button-down”

“button-up”

“drag”

cat-after-
button-down

cat-after-
button-up

cat-after-drag

Call GraphData Definitions

The world
contains a cat (or
cats), so world-
after-mouse-
event calls cat-
after-mouse-
event (once per
cat).

A MouseEvent is
either a button-
down, a button-
up, or a drag, so
cat-after-mouse-
event calls one of
cat-after-button-
down, cat-after-
button-up, or
cat-after-drag.

What if there were more things in the
world?

21

Data Definitions Call Graph

World

Cat Traffic Light

world-after-
tick

cat-after-tick
traffic-light-

after-tick

Maybe the world contains a
cat and a traffic light...
Then world-after-tick would
have to call both cat-after-
tick and traffic-light-after-tick

What if the motion of the cat were
more complicated?

• In our problem, the components of the new cat
were all "one-liners".

• If the motion of the cat were more complicated,
you might need to do some complicated
computation to determine the next x,y position
and next x,y velocities of the cat.

• You'd turn some or all of these into help
functions.

• This still winds up following the structure of the
data:

22

What if the motion of the cat were
more complicated? (2)

23

Data Definitions

Call Graph

World

Cat Traffic Light

world-after-
tick

cat-after-tick
traffic-light-

after-tick

x-pos
y-pos
x-vel
y-vel
selected?

cat-x-pos-
after-tick

cat-x-vel-after-
tick

cat-y-vel-after-
tick

cat-selected?-
after-tick

cat-y-pos-
after-tick

You may not need all of
these help functions if
some of the components
of the cat after the tick are
one-liners.

Summary

• In this lesson, you had the opportunity to

– Build a more complex world

– Write more complex data definitions, representing
information in appropriate places.

– Use the structure of the data to guide the
development of programs incorporating multiple
data definitions ("the structure of the program
follows the structure of the data").

Next Steps

• Run 3-4-two-draggable-cats.rkt and study the
code (including the tests!)

• If you have questions about this lesson, ask
them on the Discussion Board

