Two Draggable Cats

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 3.4

© Mitchell Wand, 2012-2014
TECT This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Introduction and Learning Objectives

* |n this lesson, you will learn how to build more
complicated worlds with more than one

object.
* By the end of this lesson you should be able to

— Write more complex data definitions, representing
information in appropriate places.

— Use templates to guide the development of
programs incorporating multiple data definitions.

Requirements

Like draggable-cat, except:
We have 2 cats in the scene

Each cat can be individually selected, as in
draggable-cat

Space pauses or unpauses the entire
animation

Demo: two-draggable-cats:
http://www.youtube.com/watch?v=XvODwV7i
VrA

http://www.youtube.com/watch?v=XvODwv7ivrA

two-draggable-cats: demo

YouTube link

Note: I've added a bunch of tests since this video was made. Study them!

https://www.youtube.com/watch?v=XvODwv7ivrA

Information Analysis: World

 The world has two cats and a paused?

— it is the whole world that is paused or not

Data Definitions: World

;; REPRESENTATION:

;5 A World is represented as a (make-world catl cat2 paused?)
55 INTERPRETATION:

;3 catl, cat2 : Cat the two cats in the world

;5 paused? : Boolean is the world paused?

55 IMPLEMENTATION:
(define-struct world (catl cat2 paused?))

55 CONSTRCTOR TEMPLATE:
55 (make-world Cat Cat Boolean)

55 OBSERVER TEMPLATE:
33 world-fn : World -> ??
(define (world-fn w)
(... (world-catl w) (world-cat2 w) (world-paused? w)))

Information Analysis: Cat

* Each cat has x-pos, y-pos, and selected?
 What about paused?

— cats aren't individually paused
— it's the whole thing that is paused or not.

Data Definitions: Cat

55 REPRESENTATION:
;5 A Cat is represented as (make-cat x-pos y-pos selected?)
55 INTERPRETATION:

55 X-pos, y-pos : Integer the position of the center of the cat
HH in the scene
;5 selected? describes whether or not the cat is selected.

55 IMPLEMENTATION
(define-struct cat (x-pos y-pos selected?))

;; CONSTRUCTOR TEMPLATE:
;5 (make-cat Integer Integer Boolean)

55 OBSERVER TEMPLATE:
;5 template:
;53 cat-fn : Cat -»> ??
(define (cat-fn w)
(... (cat-x-pos w)
(cat-y-pos w)
(cat-selected? w)))

Data Design Principles

* Every value of the information should be
represented by some value of the data

— otherwise, we lose immediately!

* Every value of the data should represent some
value of the information
— no meaningless or nonsensical combinations

— if each cat had a paused? field, then what would it
mean for one cat to be paused and the other not?

— |Is it possible for one cat to be paused and the other
not?

Follow the template!

* |f your world has some cats in it, then your
world function will just call a cat function on

each cat.

* The structure of your program will follow the
structure of your data definitions.

e Let's watch this at work:

world-after-tick

;3 world-after-tick : World -> World

33 RETURNS: the world that should follow the

55 given world after a tick

;35 STRATEGY: Cases on whether the world is paused

(define (world-after-tick w) (world-cat1 w) is a cat, so
. 5 we just call a cat function
(if (world-paused? w) on it

W

(make-world
(cat-after-tick (world-catl w))
(cat-after-tick (world-cat2 w))
false)))

Remember: The Shape of the Program

Follows the Shape of the Data

World wor!d
function
Cat cat.
function
Data Hierarchy (the Call Tree (the arrow
world contains 2 cats) goes from caller to

callee)

12

cat-after-tick

L]

B 2P]
o o
B 2P]

o o
)

o o
B 2P]
L]

B 2P]
o o
B 2P]
o o
B 2P]

o o
B

o o
B

o o
B

[]
B 2P]

s function definition on next slide

: cat-after-tick : Cat ->» Cat

RETURNS: the state of the given cat after a tick in an
unpaused world.

EXAMPLES:

; cat selected

(cat-after-tick selected-cat-at-20) = selected-cat-at-20
cat paused:
(cat-after-tick unselected-cat-at-20) = unselected-cat-at-28

STRATEGY: Cases on whether the cat is selected, then use

constructor template for cat.‘\\\\\\\

It would be OK to write
just "Use template on

C

cat-after-tick definition

(define (cat-after-tick c)
(if (cat-selected? c)
C
(make-cat
(cat-x-pos ¢)
(+ (cat-y-pos c) CATSPEED)
(cat-selected? c))))

world-to-scene

e world-to-scene follows the same pattern: the
world consists of two cats, so we call two cat
functions.

e Both cats have to appear in the same scene,
so we will have to be a little clever about our
cat function.

world-to-scene

;5 world-to-scene : World -> Scene

55 RETURNS: a Scene that portrays the

55 given world.

55 STRATEGY: Use template for World on w
(define (world-to-scene w)

(place-cat
1d < t1 The pieces are cats, so
(wor' -Ca W) create a wishlist
(place-cat function to place a cat
(world-cat2 w) on 8 eene

EMPTY-CANVAS)))

place-cat

;5 place-cat : Cat Scene -> Scene
;3 returns a scene like the given one, but with
;3 the given cat painted on it.
;5 strategy : Use template for Cat on c
(define (place-cat c s)
(place-image

CAT-IMAGE

(cat-x-pos c¢) (cat-y-pos c)

s))

The Structure of the Program Follows
the Structure of the Data (1)

* Let's look again at the structure of our
program.

* |f we draw the call graph of our program
(showing which functions call which), we can
see that the call graph mirrors the structure of

the data

* The world contains two cats, so world-after-
tick calls cat-after-tick (twice).

* Let' draw some pictures:

The Structure of the Program Follows
the Structure of the Data (2)

World

Cat

Data Definitions

world-after-
tick

world-to-scene

world-after-
mouse-event

cat-after-tick

place-cat

\ 4
cat-after-
mouse-event

Call Graphs

19

The Structure of the Program Follows
the Structure of the Data (3)

World

A

Cat

Mouse Event

“button-down”

“button-up”

world-after-
mouse-event

A 4

cat-after-
mouse-event

cat-after-
button-down

cat-after-
button-up

lldrag”

Data Definitions

cat-after-drag

Call Graph

The world
contains a cat (or
cats), so world-
after-mouse-
event calls cat-
after-mouse-
event (once per
cat).

A MouseEvent is
either a button-
down, a button-
up, or a drag, so
cat-after-mouse-
event calls one of
cat-after-button-
down, cat-after-
button-up, or
cat-after-drag.

What if there were more things in the

world?
World worIo!-after-
/\ E<
L . traffic-light-
Cat Traffic Light cat-after-tick Sfter-tick
Data Definitions Call Graph

Maybe the world contains a
cat and a traffic light...

Then world-after-tick would
have to call both cat-after-
tick and traffic-light-after-tick

21

What if the motion of the cat were
more complicated?

In our problem, the components of the new cat
were all "one-liners".

If the motion of the cat were more complicated,
you might need to do some complicated
computation to determine the next x,y position
and next x,y velocities of the cat.

You'd turn some or all of these into help
functions.

This still winds up following the structure of the
data:

What if the motion of the cat were
more complicated? (2)

World

N

world-after-

tick

AN

Cat Traffic Light cat-after-tick traffic “ght
after-tick
cat-x-pos-

X-pos after-tick / Call Graph
Y-pos ¥
x-vel cat-y-pos You may not need all of
y-vel after-tick these help functions if
selected? v\ some of the components

Data Definitions

cat-x-vel-after-
tick

of the cat after the tick are
one-liners.

X\

cat-y-vel-after-
tick

3]

cat-selected?-

23

after-tick

Summary

* |n this lesson, you had the opportunity to
— Build a more complex world

— Write more complex data definitions, representing
information in appropriate places.

— Use the structure of the data to guide the
development of programs incorporating multiple
data definitions ("the structure of the program
follows the structure of the data").

Next Steps

* Run 3-4-two-draggable-cats.rkt and study the
code (including the tests!)

* |f you have questions about this lesson, ask
them on the Discussion Board

