
INTERMEZZO B: Non-Linear Flow of Control

Gene Cooperman

Copyright © 2026 Gene Cooperman, gene@ccs.neu.edu
This text may be copied as long as the copyright notice remains and no text is modified.

INTERMEZZO: Non-Linear Flow of Control

Objective: To understand how program execution flow can deviate from the standard sequential path using
three primary mechanisms: Signal Handling, Context Switching, and Pre-execution Initialization.

I. The Foundation: Reviewing the Call Stack

Standard program execution is linear and synchronous. When a function is called, the system manages
memory using the call stack.

• The Call Frame: Every pending function call creates a memory area called a “call frame” or “stack
frame.”

• Contents: A frame holds local variables, arguments, and most critically, the return address (the
instruction pointer where execution should resume).

• Linearity: The stack grows predictably (e.g., main calls A, A calls B). Execution always returns to the
function directly below it on the stack (LIFO).

II. Example 1: Signal Handlers (Asynchronous Events)

Signal handlers allow the Operating System (OS) to interrupt the program at any moment to communicate
an event (a signal sent by the operating system), such as a divide-by-zero, timer expiry, or user interrupt.

• Trigger: An asynchronous event originating from the OS kernel or hardware.
• Comparison to Exceptions: A signal handler processes this asynchronous event in a similar philo-

sophical manner to exception handlers seen in higher-level languages like Java and C++. When an
asynchronous fault occurs, the signal handler is invoked, much like a catch block is invoked when an
exception is thrown.

• Mechanism:

1. The CPU is paused immediately.
2. The OS forces the creation of a new call frame on top of the existing stack structure.
3. This frame belongs to the registered Signal Handler function.

• Non-Linearity: This is a non-linear flow because execution jumps from any arbitrary instruction to
the handler function, without a corresponding call instruction in the program’s source code.

1



III. Example 2: Context Switching (getcontext and setcontext)

This mechanism allows user-level code to freeze the entire state of the CPU and later restore it, enabling
programmatic jumps between arbitrary points in execution.

What is a “Context”?

A “context” (represented by ucontext_t in C) is a data structure containing the snapshot of the CPU’s
state at a single moment. It is the current state of the CPU, and especially the current state of the registers,
including the Program Counter (Instruction Pointer) and Stack Pointer.

The Flow: Implementing Try-Catch using Signals

The try-catch syntax for exception handlers in Java or C++ can be implemented as a signal handler
combined with a call to setcontext.

1. The “Try” Block: At the beginning of a high-level try block, the runtime performs a call to
getcontext(). This saves the current, stable CPU state into a context variable (the “checkpoint”).

2. The Fault/Exception: If code inside the try block triggers a fatal error, the OS sends a signal.
3. The Signal Handler (The “Catch”): The pre-registered signal handler function is executed.
4. The Unwind: Inside the signal handler, the non-linear action occurs: a call to setcontext() using

the checkpoint saved in step 1.

• Effect: This instantly unwinds the stack (discarding the signal handler’s frame and the frames that
led to the fault), and execution resumes at the exact instruction immediately following the original
getcontext() call, thus returning to an earlier call frame on the stack.

Function
Action in a Try/Catch
implementation Effect on Flow

getcontext() Save: Executed at the start of
the try block.

Execution continues linearly.

Signal Handler Interrupt: Invoked on fault
(e.g., divide by zero).

Interrupts linear flow, pushes
new frame.

setcontext() Restore: Called inside the
signal handler to jump back to
the getcontext location.

Execution teleports (non-local
jump) back to the saved state.

IV. Example 3: Constructor Functions (Pre-execution Initialization)

This non-linear flow occurs before the program’s explicit starting point (main).

• The Rule: If a global object or variable is initialized by a constructor function, this must occur
even before the normal execution of the “main” function.

• Mechanism: The Dynamic Linker (the program loader) handles this flow by executing the con-
structors in all loaded libraries before jumping to the program’s main entry point.

2



Forcing Non-Linear Flow with LD_PRELOAD

This scenario can be forced by, for example, setting the environment variable, LD_PRELOAD=/full_path/mylib.so
before executing a program.

• If mylib.so has a global variable or object initialized by a constructor function, then the constructor
function will execute even before the function main, due to the use of LD_PRELOAD.

Flow of Control Summary

The flow is dramatically altered from the expected: Loader (Linker) Library Constructor Main
function.

V. Summary Table

Mechanism Trigger Stack Behavior Flow Type
Signal Handler Asynchronous OS Event Pushes new frame on

top
Interrupt

setcontext Explicit Function Call Overwrites CPU state
(Non-local jump)

Jump/Restore

Constructors Program Load / Linker Execution occurs before
the defined entry point
(main).

Pre-execution

VI. Going Deeper

Mechanism man page
Signal Handler man 2 signal (register a signal handler function);

man 2 kill (send signal)
setcontext man 2 setcontext (includes setcontext and

getcontext)
Loader/linker man ld.so (and search on LD_PRELOAD)
Constructors (used with LD_PRELOAD) Java: built into spec for classes

C: add __attribute__((constructor)) after
return type of the function

Example Code:

See A-INTERMEZZO-2-C-code-setcontext.pdf and
A-INTERMEZZO-3-C-code-LD_PRELOAD.pdf, in this directory, for example C code.

3


	INTERMEZZO: Non-Linear Flow of Control
	I. The Foundation: Reviewing the Call Stack
	II. Example 1: Signal Handlers (Asynchronous Events)
	III. Example 2: Context Switching (getcontext and setcontext)
	IV. Example 3: Constructor Functions (Pre-execution Initialization)
	V. Summary Table
	VI. Going Deeper



