
INTERMEZZO A: Introduction to C Pointers

Gene Cooperman

Copyright © 2026 Gene Cooperman, gene@ccs.neu.edu
This text may be copied as long as the copyright notice remains and no text is modified.

Introduction to C Pointers

Understanding pointers is a fundamental milestone in learning C. Understanding pointers is also required
for understanding the man pages of system calls. At its core, a pointer is simply a variable that stores the
memory address of another variable.

1. Direct and Indirect Manipulation: prog1.c

To understand how memory works, imagine computer memory as a long row of numbered boxes. Each
variable you declare is a box that holds a value.

#include <stdio.h>
void addOne(int *myvariable) {

*myvariable = *myvariable + 1;
}
// Three ways to increment a variable, including pointers.
int main() {

int x = 17;
int *y = &x;
x = x+1;
printf("x: %d\n", x);
*y = *y + 1;
printf("x: %d\n", x);
addOne(&x);
printf("x: %d\n", x);
return 0;

}

Expected Output

x: 18
x: 19
x: 20

1

Memory Diagram (The “Box” Analogy)

The following diagram illustrates the relationship between the variable x and the pointer y. We assume for
this example that the box for x is located at memory address 0x4a30.

int *y: 0x4a30: int x:
+----------+ +----------+
| 0x4a30 | ---------> | 17 |
+----------+ +----------+

Explaining the Variables

• The x Box: When int x = 17; is executed, C sets aside a box labeled int x: at a specific address
(e.g., 0x4a30) and stores the value 17 inside it.

• The y Box: When int *y = &x; is executed, a second box labeled int *y: is created.
• The Type: In the declaration int *y, the type is int *, which means “pointer to int”.
• The Value: The value inside the y box is 0x4a30, the memory address of the x box. This address

acts as a pointer to x.
• The Address-of Operator (&): The & symbol is an operator that returns the memory address of a

variable—it tells you where that variable’s box is located in memory.
• Dereferencing (*): In a statement using *y, the * operator tells the computer to “follow the pointer”

from the y box to the box it points to. This process is called dereferencing.

2. Arrays and Strings: prog2.c

In C, an array is a constant pointer to its first element. Consequently, C does not have a native string
type; it uses the type char * as a pointer to the beginning of an array of characters. By convention, an array
of char representing a string must end with the null character (\0) to indicate the end of the string.

#include <stdio.h>
int main() {

char *mystring = "Help me, or I'm leaving.\n";
// ALTERNATIVE: char mystring[] = "...\n";
printf("%s\n", mystring);
printf("%s\n", mystring + 12);
printf("%s\n", &mystring[12]);
mystring[7] = '\0';
printf("%s\n", mystring);
return 0;

}

Expected Output

Help me, or I'm leaving.
I'm leaving.
I'm leaving.
Help me

2

Memory Diagram of the C String

This diagram shows the mystring pointer pointing to the array starting at address 0x6be0.

char *mystring:
+----------+
| 0x6be0 |
+----------+

|
|
v

0x6be0:
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| H | e | l | p | | m | e | , | | o | r |...| n | g | . | \n| \0|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Understanding Pointer Arithmetic and the Null Terminator

• Pointer Arithmetic: The expression mystring + 12 calculates a new address by moving 12 character-
sized boxes forward from the start of the array.

• Addressing Indices: The expression &mystring[12] is functionally identical to mystring + 12, as
both return the memory address of the character at index 12.

• The Null Terminator (\0): By setting mystring[7] = '\0';, the code inserts a “stop sign” into
the array. When printf processes the string, it stops immediately upon hitting the null character, even
though the rest of the characters are still in memory.

An Array is a Constant Pointer

Finally, note that we could have used either of:

const char *mystring = "Help me, or I'm leaving.";
char mystring[] = "Help me, or I'm leaving.";

In this form, the diagram would no longer show a mystring box in memory. Now, mystring is a constant.
Constants have a fixed value known only to the compiler, and the value of the constant cannot be changed at
runtime.

3

	Introduction to C Pointers
	1. Direct and Indirect Manipulation: prog1.c
	Expected Output
	Memory Diagram (The ``Box'' Analogy)
	Explaining the Variables

	2. Arrays and Strings: prog2.c
	Expected Output
	Memory Diagram of the C String
	Understanding Pointer Arithmetic and the Null Terminator
	An Array is a Constant Pointer

