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6.1 Linearized Kinematics 

In previous chapters we have seen how kinematics relates the joint angles to the position 
and orientation of the robot's endeffector. This means that, for a serial robot, we may think 
of the forward kinematics as a mapping from joint space to the space of rigid body motions. 
The image of this mapping is the work space of the robot. In general, the work space will 
be only a subspace of the space of all rigid body motions; it consists of all positions and 
orientations reachable by the robot's end-effector. As we have already mentioned, we can 
only put local co-ordinates or parameterisations on the space of rigid body motionst. 

We can also consider mappings associated with particular points; note that the image 
of such a map is sometimes called the work space of the robot: it is the space of point 
reachable by some point on the end-effector. Consider, for example the wrist centre of a 
Puma robot:- 

K : (e1,02ie3,e4ie5,e6) - (xL,y:i~f) 
The map is given explicitly in terms of the A -matrices:- 

Here, (x,, y,, z,) are the home co-ordinates of the wrist centre. In other words we have 
three functions:- 

X: = k1 (81, . . . , 66) 
Y: = k2(617...1e6) 

2: = k3(8 1,...,e6) 

- 

Some authors like to regard the forward kinematics as a co-ordinate transformation; but this is not possible 
since the spaces concerned are topologically different. 
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As we have seen previously, these are highly non-linear functions of the joint angles. 
However, if we are only interested in the neighbourhood of some point, it is possible to 
linearize the map. That is, we find a linear approximation to the original map. So if we 
make small changes in the joint angles we get:- 

If we write (bx:, by:, ~5.z:)~ = Ax and (be1, . . . , 6 0 ~ ) ~  = A8, then we can summarize 
the above equations as:- 

A x = J A 8  

The matrix J is called the jacobian of the map; that is, the jacobian is the matrix of 
partial derivatives. In this case:- 

The jacobian matrix behaves very like the first derivative of a function of one variable. For 
a function of several variables we have a version of Taylor's theorem- 

For small variations about 8 the map is approximated by its value at 8 plus J (8) times the 
variation, A8. 

For an example we turn to the planar manipulator yet again, see fig. 6.1. The kinematic 
equations of the end point are given by:- 

The jacobian of this is:- 
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So there is no error in the y-direction and an error of - &(lz + 13) in the x-direction; to 
first order. 

This tells us about singularities in the kinematics. In section 5.2 we defined a singularity 
as a point where the robot loses a degree-of-freedom. In fact at a singularity the robot loses 
an 'instantaneous' degree-of-freedom also. This means that, to first order, the robot's end- 
effector cannot move in one direction. The columns of the jacobian span the instantaneous 
directions the end-effector can move in. That is, the robot can only move in directions 
which are linear combinations of the columns of the jacobian. Thus a better definition 
of a singularity is as follows. A point 4 in the joint space of a robot is a singular point 
if and only if the jacobian J (4) has less than maximal rank. That is, if there are linear 
dependencies among the columns of the jacobian. 

In the example above, J (0,0,0) had a row of zeroes. So all the 2 x 2 submatrices would 
have zero determinant and thus the rank of the jacobian is one. Hence, the home position 
is singular. However, J (0,5,0) has a submatrix with non-zero determinant, so the rank is 
two, which is the maximum and the point is thus non-singular. If we are interested in the 
position and orientation of a six joint manipulator then the jacobian is a square matrix. In 
such cases the condition for a point 4 to be singular reduces to det(J (4)) = 0; that is, the 
matrix is singular. 

6.3 Numerical Methods 

The jacobian of a manipulator also finds applications in various numerical methods, for 
example, to solve the inverse kinematics. As an example, we will look at a method which 
is the many-variable extension of the Newton-Raphson method. 

For a single variable the Newton-Raphson method is as follows. We wish to solve an 
equation:- 

f ( X I  = 0 

for some function f. We begin with an initial guess z ( O ) ,  and then refine this guess using 
the iteration formula:- 

Here the notation, superscript (i), denotes the ith iterate. 
This generalizes to many variables quite easily. Suppose we have six equations to solve 

in six variables:- 
fl(01,. . . ,661 = 0 
fi(el,...,e6) = 0 



Jacobians 63 

We may summarize this with the vector notation as f(8) = 0. Taylor's theorem tells us 
that:- 

f (e  + h) = f (e)  + J (e)h 

Now if we assume that 8 is the root we are looking for, then since f(8) = 0, we can 
approximate the error h as:- 

h = J -l(e)f(e + h) 

Since at this stage, we do not know 8 we cannot calculate J -I(@), so we approximate it 
by J -'(8 + h) which is our guess. By setting h(') = 8( ' )  - 8('++') we can set up the 
following iterative scheme:- 

This is the Newton-Raphson formula for many variables. In practice, however, inverting 
matrices is very slow. A quicker method is to solve the linear equations J (di))h(') = 
f (8(')), using Gauss elimination, for example. 

To see how this could be used, we look at a simple example. Consider the planar 
manipulator once more. This time we want to take account of the output angle 9 = 
O1 + O2 + O3 as well as the position of the end point. We will assume that l1 = 2, l2 = 1 
and l3 = 1 in some units. Suppose the arm is in the position illustrated in fig. 6.1, where 
O1 = ~ / 3 ,  O2 = n / 6  and 03 = ~ / 6 .  

The forward kinematics gives the starting position as:- 

Now suppose we want to move the end-effector to the position where:- 

We set up the three functions:- 

In the desired position all three of these functions will vanish. So we may use the Newton- 
Raphson method to find the roots, that is the values of the joint angles. The jacobian has 
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J(81,e2,e3) = 
-2 sin 81 - sin(& + 82) - sin(& + 02) sin(& + 82 + 03) 
- sin(& + 82 + B3) - sin(O1 + O2 + 83) 

2 cos 81 + cos(O1 + 82) cos(81 + 82) COS(& + 02 + 83) 
+ COS(& + 82 + 83) + cos(81 + 82 + 83) 

1 1 1 

Asour initial guess we may as well use the staningposition, so that do) = (~ /3 ,7r /6 ,  ~ 1 6 ) ~ .  
So now:- 

-3.5981 -1.8660 -0.8660 0.0000 
-0.5000 -0.5000 and f(oi0))  = 0.5981 

1 1 (o.oooo) 

We find the first approximation to the error by solving:- 

To four decimal places the solution is:- 

For the next iteration the values of the jacobian and the functions are:- 

2.2441 -1.3758 -0.8660 -0.059 
-1.4603 -0.5000 and f ( d l ) )  = -0.756 

1 1 ( O.OOOO) 

This then gives:- 

-0.1606 0.6097 
h "  = ( 0.54g3) and therefore oi2) = ( 1.6083) 

-0.3887 -0.1236 

The values of the functions here are now f ( d 2 ) )  = (0.0367, -0.1910,0.0000)T, which is 
getting closer to zero. The next two iterations give:- 

and 
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Figure 6.2 A Three Joint Manipulator 

If we can tolerate an accuracy of only two decimal places we can stop here. Otherwise we 
could continue to any desired accuracy. In this particular case we have an exact solution 
of the inverse kinematics: compare the results here with those of exercise 5.3. 

Exercises 

6.1 A manipulator has the kinematic structure illustrated in fig. 6.2. 

(i) By setting up a suitable co-ordinate system and home position, find the kine- 
matic equations for the co-ordinates of the point P. 

(ii) Calculate the jacobian of this manipulator. 
(iii) Show that the limiting positions, where the determinant of the jacobian van- 

ishes, lie on the surface of a hollow torus. Assume that 11 > l2 + 13. 

(iv) How many postures are there in general? 
(v) If l 1  < (12 + 1 3 ) ,  show that there exist points with four postures, and that points 

on the J1 axis have a continuous set of postures. 

6.2 For a parallel manipulator it is the inverse kinematics that gives a mapping, this 
time from the space of rigid body motions to joint space. Find the jacobian matrix 
for the parallel planar manipulator whose inverse kinematics were found in exercise 
5.7. 
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Figure 6 3  (a) Linear Velocity Given by an Instan- (b) Relation Between Angular and Lin- 
taneous Centre of Rotation ear Velocities 

6.4 Linear Velocities 

Perhaps the most important use for jacobians is for relating the joint velocities to the link 
velocities. In section 6.1 we saw that Ax x J Ad. Dividing by At and proceeding to the 
limit we obtain the exact relation:- 

? = J B ,  

The dots, as usual, denote differentiation with respect to time. This is quite general, but 
usually we are interested in the linear velocity of some point on a link, or the angular velocity 
of a link. The movements that can be performed by robots are very general; however, for 
any rigid body motion in the plane there is always a centre of rotation. Similarly for motion 
on the surface of a sphere, as one gets from a spherical wrist, there is always an axis of 
rotation. For rigid movements in three dimensions there is always a fixed line; the screw 
axis. If a rigid body undergoes some complicated motion in the plane, for example, then at 
any time in the body's motion there will be an instantaneous centre of rotation. Similarly 
we get instantaneous rotation axes and instantaneous screw axes. As we shall see below, 
these concepts are closely related to the velocities that we are interested in. 

In two dimensions we have a simple relation between the velocity of a point and the 
instantaneous centre of rotation, see fig. 6.3(a). This can also be shown using the 3 x 3 
mamces which represent rigid movements. Let p be the centre of rotation and suppose 
that we wish to know the velocity of the point x. Now the position of x is given by:- 

Note that from now on we will not write the partition lines in partitional matrices. Now 
assume that 9 = 0 when t = 0. We can always arrange for this to be true by beginning the 
measurements from the point we are interested in. Now at d = 0 the time derivative of the 
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above is given by:- 

This gives the equation:- 
i ( 0 )  = R ( o ) ( x ( o )  - p)8 

cos 9 - sin9 But we know that R = , so taking the differential and setting 9 = 0 sin6 cos O 
gives:- 

As mentioned above, we may begin measuring time anywhere, so these results apply for 
any time, not just t = 0. We can drop the time dependence and write:- 

= (P?, - Y ) e  
Y = (a: - P X P  

Notice that the vector jr is always normal to ( x  - p) .  These results can be used to compute 
the jacobian of planar manipulators. For a three joint planar manipulator we have:- 

Again we can arrange things so that at the point of interest 91 = 92 = 93 = 0. Then since 
A ; ( O )  is the identity matrix, when we differentiate and set the joint angles to zero, we get:- 

Once again there is nothing special about the point O1 = 82 = 63 = 0, and our result 
applies quite generally. For each A -matrix the centre of rotation is simply the current 
position of the joint. So if we denote the current position of joint i by j; we have:- 

; = ( j ~ ,  - + (& - y)& + (j3, - y)03 
Y = (x - h X ) &  + (z - jzX)o2 + (z - j3x)e3 

This can be neatly summarized as:- 

And this shows us that the jacobian is given by:- 

The suitably altered co-ordinates of the joints are the columns of the jacobian. 
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The planar manipulator in section 6.1 had its joints at:- 

11 cos 01 + 12 cos(B1 + 02) 
11 sin 01 + 12 sin(B1 + 02) 

and the end point has co-ordinates:- 

So the jacobian is exactly as calculated in section 6.1. Its columns are:- 

(%) = ( -11 sin 01 - l2 sin(& + 02) - l3 sin(O1 + 6'2 + 03) 
2% 
801 11 cos el + z2 COS(B~ + 82) + z3 c0s(e1 + e2 + e3) 

but here we have not had to find any derivatives. 

6.5 Angular Velocities 

The angular velocity of a rigid body is a vector. It is aligned along the instantaneous 
rotation axis of the body and its magnitude is the angular speed about the axis. Consider 
a point r attached to a body rotating with angular velocity w ;  see fig. 6.3(b). The linear 
velocity of the point is given by i- = w A r. If we represent the rotations by 3 x 3 matrices 
we have that:- 

r(t)  = R (t)r(O) 

Differentiating and setting t = 0 gives:- 

Comparing this with our first result shows that d (0) must have the same effect on vectors 
as 'wA' ;  in other words for any vector a we must have:- 

R (0)a = w A a 

This is not hard to solve, see exercise 2.7. It gives us that:- 
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This can be used to find the velocity of the last link of a spherical wrist. For a three joint wrist 
the overall transformation K is the product of three rotations, K = R 1 (81 )R 2 (82)R 3 (03). 
The derivative when all the joint angles are zero is:- 

and hence the angular velocity of the final link is just the sum of the angular velocities of 
the joints. Now, because each joint just rotates about its axis, we can write the angular 
velocities of the joints as w ,  = +;&; where +; is the unit vector along the ith joint. The 
angular velocity of the last link can be expressed by the following matrix equation:- 

Notice that the columns of the jacobian here are just the vectors along the joint axes. 
So it is easy now to calculate the jacobian of the 3-R wrist, introduced in section 4.2, for 
example. 

- sin dl 
= (i)  , +2=R(017k)  (:) = (co;& ) ,  

Hence the jacobian for this manipulator is:- 

( 
0 - sine1 cosdl sine2 

J = 0 cosO1 sin 81 sin82 
1 0  cos e2 

6.6 Combining Linear and Angular Velocities 

For a rigid body moving in three dimensions we want to know both its angular velocity and 
the linear velocity of its points. We can find these by considering a general screw motion:- 

In section 2.6 we saw that the translation vector is given by t = 2% + ( I  - R )u, where 
p is the pitch of the screw, G a unit vector along its axis, u a point on the axis and we have 
used 0, rather than I$, for the joint variable which depends on time. The velocity of a point 
x is then given by:- 

(:) = (% k )  (:) 
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Figure 6.4 A Screw Motion 

Using what we already know about the derivatives of rotation matrices, this can be written 
as:- 

x = w A x + s  

The linear velocity s  = t is a characteristic velocity of the motion. Physically it is the 
linear velocity of points on a line through the origin parallel to the axis of rotation. We can 
find s by differentiating t:- 

Notice that the term is the velocity of a point lying on the screw axis. So, as we 
would expect from contemplating fig. 6.4, the velocity of a point x  can be written more 
fully as:- 

We can combine the angular and linear velocities into six component vectors (:). These 

six component vectors are called instantaneous screws. As we shall see, they are for rigid 
bodies the analogue of the angular velocity of particles. 

Now, if the screw motion is about a joint, then C is the unit vector in the direction of the 
joint, u is the position vector of a point on the joint axis and the angular velocity will be 
w  = ~ 8 .  Finally p is the pitch of the joint. The velocity of a point attached to the joint will 
be given by:- 

Connecting six joints together, as in a serial robot, both the linear and angular velocities 
add vectorially to give the angular velocity w ,  and the linear velocity s, of the last link. So 
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we may write this in terms of instantaneous screws:- 

This can be condensed into the matrix equation:- 

( 
Gi 

The columns of the jacobian matrix J are given by 
ui A +, + 

, and are determined 

by the ith joint. In other words, to each joint there is an associated instantaneous screw 
which depends only on the position, orientation and pitch of the joint. These 'joint screws' 
are reasonably easy to calculate and once again we have been able to find the jacobian 
matrix of the manipulator without computing any partial derivatives. 

The jacobian is of fundamental importance in robotics. This is because it is the lin- 
earization of the forward kinematics. Hence, it tells us about errors, velocities and other 
first order properties of the robot. For robot manipulators with an open loop structure the 
jacobian is very simple to calculate since its columns are given by the joints of the robot. 

Exercises 

6.3 In two dimensions a sliding joint is represented by a matrix ( b ). where 

x = ( ) d, with d = d ( t )  is a function of time. 

(i) Find the velocity of a point undergoing such a translation. If such a joint were 
used in a serial manipulator, what would be the corresponding column in the 
jacobian? 

(ii) A planar manipulator consists of a revolute joint and a sliding joint. In the 
home configuration the revolute joint is at the origin, the sliding joint is aligned 
along the x-axis and a point Q attached to the last link has co-ordinates (1,O). 
Find the velocity of Q as a function of the joint angle 8 of the revolute joint 
and the extension d of the sliding joint. 

6.4 Find the jacobian of the Cincinnati T3 wrist illustrated in fig. 4.4. 
6.5 Let R ( t )  be a one parameter family of rotation matrices, such that R ( 0 )  = I . Using 

the fact that rotation matrices satisfy RR = I ,  show that R ( 0 )  is an antisymmetric 
matrix. 
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6.6 The instantaneous screw of a revolute joint is given by ( 1 ) . 1f a rotation R 

followed by a translation t is performed on the joint, show that the new joint will 
have the instantaneous screw given by:- 


