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Abstract  

A variety of Natural Language Processing (NLP) tasks, such as 
named entity recognition, stemming and question answering, 
benefit from knowledge of the words syntactic categories or Part-
of-Speech (POS) [4][6]. POS taggers have been successfully 
applied to assign a single best POS to every word in a corpus 
[2][5][12]. This paper reports on the implementation and empiric 
comparison of three supervised, stochastic tagging approaches 
(Unigram Model, Hidden Markov Model, Viterbi algorithm). The 
presented comparison not only quantifies the tagging accuracy 
achieved by the Viterbi algorithm (93.9% on average), but also 
determines the partial accuracy gain that different components 
represented in Viterbi account for.  

1  Introduction 

While many words can be unambiguously associated with one POS or tag, e.g. 
noun, verb or adjective, other words match multiple tags, depending on the context 
that they appear in. Wind for example is a noun in the context of weather, and is a 
verb that refers to coiling something. [3] reports that in the Brown corpus, which is 
used in this study and describe in section 3.1 in detail, over 40% of the words are 
syntactically ambiguous. Thus, ambiguity resolution is the key challenge in tagging.  

Taggers can be divided into systems that are rule-based, stochastic and 
transformation-based [6]. Stochastic taggers exploit the power of probabilities and 
machine learning techniques in order to disambiguate and tag sequences of words 
[10]. One widely and successfully applied approach to statistical modeling is 
Hidden Markov Models (HMM) [1]. In the domain of speech recognition, HMM has 
become the favored, state of the art model [8]. HMM are also used for tagging, 
where the most accurate systems achieve errors rates of less than four percent [4]. 
Most of the existent HMM taggers are trained with labeled data (e.g. [3][12]), while 
fewer ones use unlabeled data to train a HMM tagger based on expectation 
maximization (EM) (e.g. [5]). Based on the applicability of stochastic approaches 
for syntactical tagging and the potentially low error rates, I decided to pursue this 
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venue for this project. This work is furthermore motivated by my current research 
on semantic network analysis, where I expect knowledge about each word’s POS to 
facilitate ontological coding.  

2  Method 

Markov Models (MM) model the probabilities of a linear sequence of non-
independent events. Applying MM to tagging aims to find the most likely sequence 
of POS on the sentence level. Not assuming independence among the observations 
enables us to account for the fact that the words in a sentence may depend on each 
other, especially in the case of meaningful N-grams, such as Department of Labor. 
MM are applicable if the limited horizon assumption (future elements in a sequence 
are conditionally independent of past elements, given the present element) and the 
time invariance assumption (probabilities are stationery) hold truth [4][6]. Note that 
the latter assumption is a theoretical one; in practice, language is a dynamic system, 
in that rules (syntax) and elements (vocabulary) emerge and vanish over time and 
across places. Relating the outlined assumptions to tagging empowers us to exploit 
and combine every word’s probability and context, as given by a word’s 
predecessor(s), if available in training data. HMM, a probabilistic function of MM, 
brings these two pieces of information together by finding the tag sequence that 
maximizes the likelihood of the product of word probability (P(word | tag)) and tag 
sequence probability (P(tag | previous n tags)).  

In tagging, the true sequence of POS that underlies an observed piece of text is 
unknown, thus forming the hidden states. The learner aims to find the sequence of 
hidden states that most probably has generated the observed sequence. This task is 
referred to as decoding, which means that given a set of observations (X) and a 
model (µ), we want to reveal the underlying Markov chain that is probabilistically 
linked to the observed states. Model µ consists of three parameters [8]:  

1. Initial state probabilities (π). This is a vector that quantifies the probability 
of the first hidden state (tag) in a sentence. Since the first word in a 
sentence has no predecessor, I follow the idea of assuming the most 
frequent tag that the word has been observed with in the training data as the 
most probable tag for this word.  

2. Sate transition probabilities (aij), stored in a transition matrix, quantify the 
likelihood of observing one hidden state given the previous hidden state.  

3. State emission probabilities (bij), stored in a confusion matrix, specify the 
probabilities of observing a particular state (word) while the HMM is in a 
certain hidden state.  

When training a tagger in a supervised fashion, these parameters are estimated from 
the learning data. In fact, parameters estimation during training is a visible Markov 
process, because the surface pattern (words) and underlying MM (POS sequence) 
are fully observed. In contrast to that, the process of applying the trained MM to 
label unseen data truly represents a HMM, because the hidden sequence is unknown.  

2 .1  Algor i thm for  Implement ing  HMM   

How can decoding be efficiently implemented? One classical strategy is the Viterbi 
algorithm [11]. The essential intuition behind the Viterbi algorithm and its main 
advantage are the reduction of the complexity of examining every full path through 
a trellis by recursively finding partial probabilities (δ) for the most likely path from 
one state to the next. A trellis represents the related search space; that is a matrix of 
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all hidden states and connections (transitions) between them along a sequence of 
observed states. The Viterbi algorithm requires three steps for searching and 
identifying one complete and most probable route through the trellis [6]:  

Viterbi algorithm ) | j =  X O, P(X, max  = (t) j t
X

µδ   

where X = X1 … Xt-1 and O = output sequence = O1 … O t-1 
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2 .2  Looking  a t  Vi terb i ’ s  p ieces  through  a  magni fy ing  g lass    

In this paper, I examine the performance of the Viterbi algorithm with respect to 
accuracy in more detail by identifying the partial accuracy gain that the different 
steps or components that the Viterbi algorithm involves account for. Specifically, I 
determine computationally how much of the total accuracy that the implementation 
of Viterbi approximation as specified above achieves can be attributed to the 
consideration of a) partial probabilities (δ), back pointers (ψ) and backtracking, b) 
initial, transition and confusion probabilities, and c) probabilities of single words.  

Point a) represents the heart of the Viterbi algorithm. It is the combination of the 
forward algorithm, back pointers and backtracking that enables Viterbi to find the 
globally best path through a trellis. Further on, I refer to point a) as Viterbi. 

Point b) represents the key idea of HMM, which is contained in the initialization 
and part of the induction step of the Viterbi algorithm. I suggest that the numeric 
difference between points a) and b) represents the accuracy gain that Viterbi can 
provide over the mere concatenation of tags that are chosen as the maximal products 
out of all combination of state transition and emission probabilities between 
subsequent words. In short, the difference between a) and b) represents the 
difference between a globally versus a locally maximal solution. Here I define local 
maximum as the outcome of induction that excludes δ from computation. Further 
on, I refer to point b) as HMM. 

Point c) resembles the initialization and initial state probabilities as described earlier 
in this section; disregarding the impact of a word’s predecessor on a word’s POS 
and not making use of the relaxed independence assumption among words in MM. 
In HMM and Viterbi, the computation of point c) applies to every first word in a 
sentence as well as one word sentences. Further on, I refer to point c) as the 
Unigram Model (UM). 

I suggest that knowledge of the contribution of points b) and c) to the total accuracy 
of Viterbi is relevant for people who need an intimate understanding of the 
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algorithm and its components, e.g. in order to fine-tune or modularly modify 
respective systems.  

3  Experiment 

3 .1  Data   

The data set used for training and validation is the tagged version of the Brown 
Corpus from the Penn Treebank 3 (PTB) corpus [7]. The PTB collection contains 
2,499 news stories from over three years of the Wall Street Journal. Every word in 
the corpus is annotated with at least one out of 36 possible tags. I implemented a 
routine that collects the data, which is stored in 500 data files that are organized in 
15 folders on a protected web site, and stores them locally on my system.  

In cases where the authors of the PTB were uncertain about the best POS for a word, 
e.g. when a word was syntactically ambiguous, they assigned multiple tags in a non-
standardized order [7]. The example England-born/NNP|VBN means that England-
born might be a singular proper noun as well as past-participle verb. I performed 
several qualitative checks (human reasoning about the best out of the offered tags) 
on randomly drawn instances of this issue from PTB, which convinced me on the 
random order of multiple tags per word. Therefore, I decided to consistently 
consider only the first POS in all cases of tag indeterminacy.   

3 .2  Order  o f  HMM  

In a first order HMM, only one precedent tag is considered (n=1). This resembles 
the bi-gram model. One might expect N-grams of sizes larger than two to lead to 
more accurate predictions, because word sequences might depend not only on one, 
but multiple predecessors (e.g. Department of Labor). Previous research has shown 
that such an approach results in less and sparser training data due to the lack of local 
histories for the beginning of sentences [6]. This can pose a serious disadvantage if 
sentences in the training data are rather short on average, or if comas instead of 
sentence marks are considered as delimiters. The average sentence in the PTB 3 has 
a length of 19.8 words [9]. Thus, a shift from a first order HMM to a second order 
HMM would reduce the amount of training data by about 5.05%, and in addition to 
that make it sparser. For these reasons, I decided to work with a first-order HMM.  

3 .3  Smooth ing  

The implementation of the proposed system required cautious handling of small 
numbers and zero probabilities at various points. First, propagating and multiplying 
partial probabilities in the induction step of Viterbi led to number underflows. This 
issue can be handled during training: In order to eliminate this problem, I used the 
natural logs of the transition and emission probabilities, and changed the related 
multiplications into summations. Note that this problem does not apply to the other 
two algorithms that were implemented, because both of them disregard partial 
probabilities.   

Second, words and state sequences that have not been observed in the training data, 
but do occur in the evaluation data, will cause 

a) Zero probability in the induction step of Viterbi. As a result, an entire 
vertical column in the trellis (all δ for step i) would have zero probabilities, 
and thus the propagation of most probable paths would break.   
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b) Accuracy losses for all three models during evaluation. This is because 
“unknown” never matches the tag that the labeled comparison set suggests 
for a word. In an initial ten-fold validation test (described in detail in 
section 3.4), unknown words accounted for 3.94% of the words, with each 
of them contributing to an increase in the error rate.   

Problems 2a) and 2b) depend on the test data: even a model trained on a humongous 
training set is likely to encounter unknown words when being applied to unseen 
data. This issue represents the downside of the time-invariance assumption. It 
occurs e.g. when new names for people, organizations or products are introduced or 
combined. To circumvent problems 2a) and b) I implemented two sets of strategies: 

Zero probabilities for transition and emission are avoided by adding the words that 
are newly encountered during evaluation to the confusion matrix and tagging them 
as ”UNKNOWN”. This leads to emission probabilities different from zero for new 
words. Next, transition probabilities that involve the UNKNOWN tag have not been 
observed previously and therefore equal zero, thus stopping the propagation of the 
most likely paths through the trellis. To resolve this problem I assigned a small 
probability (minProb) to the affected transitions: P (t | t=UNKNOWN) = minProb 
and P(t=UNKNOWN | t) = minProb. For this application I chose a ln(minProb) = -
100,000,000. This solution follows the Adding One strategy [2], which in addition 
to linear interpolation is a frequently applied smoothing technique in tagging [6].  

Unknown words are passed to a post-processing routine that applies a set of rules in 
order to re-label unknown words with an actual POS. The best-performing 
unknown-word resolution techniques in tagging use information about the word’s 
spelling [12][4]. Following this idea, I analyzed the unknown words that resulted 
from multiple evaluation runs in detail in order to find regularities in their 
association with certain POS. Based on this analysis, I implemented four types of 
orthographic rules for tagging unknown words. I assume these rules not only to be 
corpus-specific, but also to be of general applicability: Words involving a digit are 
tagged as numbers (CD). Capitalized words are tagged as singular proper nouns 
(NNS). Words ending in one out of 16 inflectional or derivational endings are 
tagged with the respective POS (e.g. –ing tagged as gerund (VBG)). Every 
remaining unknown word is labeled as singular or mass noun (NN).   

3 .4  Evaluat ion   

In order to determine the accuracy of Viterbi (globally maximal solution), HMM 
(locally maximal solution), and UM (probabilistically maximal solution), multiple 
ten-fold cross validations were performed. The validation was implemented by first 
randomly breaking the full corpus (500 files, about 1.07 million words) into ten 
partitions. Then, nine folds (450 files, 965,828 words in one full ten-fold run) were 
used for training. Finally, I removed all tags from the remaining fold (50 files, 
107,314 words in one run), used the three algorithms to tag the data in the tenth 
fold, compared the automatically assigned tags to the original labeling of the tenth 
fold, and recorded all deviations as errors. This procedure was repeated ten times1 
and the error rates were averaged.  

Typically, taggers are evaluated by running the Gold Standard test and/ or 
comparing the results to a Unigram Baseline test [4]. The Gold Standard represents 
the performance measure - the accuracy rates for Viterbi and HMM - by determining 
the portion of tagged words that the tagger and a human-labeled validation set agree 

                                                           
1 Elapsed running time for training all three models, performing a full ten-fold run, and reporting 
averaged error rates is about 10.5 minutes on an IBM T60p Intel CoreDuo2.16 GHz with 2 GB of RAM.  
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upon. The Unigram Baseline test follows the simplifying assumption that every 
word and its POS are context-independent, thus associating every word with the tag 
that the word has been most frequently observed with in the training set. In this 
project, the UM represents this baseline measure. 

The experimental results show that on average, Viterbi achieves 93.9% accuracy, 
HMM 93.5%, and UM 88.9%. These numbers do not match, but closely 
approximate the best accuracy rates reported for HMM- and Viterbi taggers (96% to 
97%), as well as for Baseline taggers (90-91%) [4].  

Figure 1: Accuracy per Algorithm  
(runs sorted by increasing error) 
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Table 1: Statistics on Accuracy  
per Algorithms  

Viterbi HMM UM
Average 93.87% 93.54% 88.88%
Min 93.69% 93.34% 88.61%
Max 94.18% 93.72% 89.11%
St. Dev. 0.15% 0.15% 0.18%  
 

 

 

 

 

 

 

Figure 2: Partial Accuracy Gain by Algorithm 
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How high is the partial accuracy gain that can be attributed to the different 
components of the Viterbi algorithm? The findings indicate that the UM alone 
achieves almost 89% accuracy (Figure 2). Building on top of that, the switches from 
UM to HMM (+4.67%) and from UM to Viterbi (+5.0%) seem significantly 
beneficial. In contrast to that, the step from HMM to Viterbi further increased 
accuracy by only 0.33%.  

In order to further investigate the partial impact of computational routines on 
accuracy, I disabled the post-processor, which takes care of tagging unknown 
words, and ran a ten-fold validation. The outcome, as shown in Table 2, reveals that 
unknown words account for less than half a percent of the error rate per algorithm.  
Table 2: Accuracy Loss caused by 
Not Handling of Unknown Words 

Algorithm Accuracy 
without Post-
Processing

Loss due to 
Unknown 
Words

Viterbi 93.49% 0.38%
HMM 93.25% 0.29%
UM 88.48% 0.40%

Table 3: Averaged Accuracy for 20-fold 
validation 

Viterbi HMM UM
Average 93.95% 93.66% 88.92%
Min 93.46% 93.24% 88.28%
Max 94.56% 94.35% 89.54%
St. Dev. 0.34% 0.35% 0.36%

Average 0.08% 0.12% 0.05%
Min 0.23% 0.10% 0.33%
Max 0.38% 0.63% 0.43%
St. Dev. 0.19% 0.19% 0.18%

Gain over Ten-Fold

 
Finally, I aimed to determine how much the size of the training set impacts 
accuracy. One might assume that in tagging, a larger training set leads to a lower 
error rate, because more words and combinations of hidden and observed states can 
be learned. To empirically test for this hypothesis, I performed ten 20-fold 
validations (corpus split into 97.5% training data and 2.5% test data). The averaged 
results (Table 3) suggest a small accuracy gain (0.05% to 0.12%, depending on 
algorithm), while the variation of the results (standard deviation) increases.  

4  Conclusions 
The algorithms that were implemented, tested and compared performed reasonably 
well on tagging unseen texts that were randomly and independently drawn from the 
same corpus as the training set. What does reasonably well mean? Assuming that an 
average sentence in the PTB corpus is 19.8 words long [8], the tagger, on average, 
would mislabel 1.21 (Viterbi), 1.28 (HMM) or 2.21 (UM) words per sentence.   

The experimental quantification of the partial information gain due to each 
algorithm revealed that UM, a simple probabilistic model used for initializing state 
probabilities in HMM and Viterbi, achieves a respectably high accuracy of 88.9%. 
However, UM is clearly outperformed by HMM, because this switch between 
algorithms leads to an accuracy gain of 4.7%. Viterbi results in the highest accuracy 
rate (93.9%), but provides only a slight accuracy gain of 0.33% over HMM. 

The empiric identification of the impact of handling unknown words on accuracy 
rates leaves us with the insight that implementing reasonable strategies for re-
labeling unknown words as POS can be more beneficial than the upgrade from 
HMM to Viterbi. The average gains in tagging accuracy due to an increase in the 
size of the training set were lower for all three algorithms than the contributions by 
the handling of unknown words. Furthermore, for larger training sets, an increase in 
the variation of the results has been observed. This finding might suggest a careful 
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consideration of this trade-off to researchers before they commit to this strategy. 
Especially for UM, the enlarged training set only led to a marginal accuracy gain of 
0.05%, which might indicate that the performance limit of this algorithm has been 
asymptotically approached  by this point.   

Several limitations of this project should be tackled in future work. First, the models 
were trained and evaluated on one specific data set. Even though this corpus 
contains more than a million observations, it still reflects a certain time period, style 
(journalistic writing) and range of domains (news paper articles). Applying the 
models to data that differs from these features is likely to result in lower accuracy 
rates as achieved herein. Second, the focus of the project (accuracy gain due to 
different algorithms, handling of unknown words, and training set size) did not 
encompass testing of MM of a higher order. For data sets with lengthy sentences, 
e.g. academic writing, trigrams or larger N-grams might further improve tagging 
accuracy. Finally, all tested algorithms are stochastic taggers; therefore a 
comparison to accuracy rates achieved with rule- or transformation-based systems 
could be valuable.     
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