
Part of Speech Tagging for English Text
Data

Jana Diesner

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
diesner@cs.cmu.edu

Abstract

A variety of Natural Language Processing (NLP) tasks, such as
named entity recognition, stemming and question answering,
benefit from knowledge of the words syntactic categories or Part-
of-Speech (POS) [4][6]. POS taggers have been successfully
applied to assign a single best POS to every word in a corpus
[2][5][12]. This paper reports on the implementation and empiric
comparison of three supervised, stochastic tagging approaches
(Unigram Model, Hidden Markov Model, Viterbi algorithm). The
presented comparison not only quantifies the tagging accuracy
achieved by the Viterbi algorithm (93.9% on average), but also
determines the partial accuracy gain that different components
represented in Viterbi account for.

1 Introduction

While many words can be unambiguously associated with one POS or tag, e.g.
noun, verb or adjective, other words match multiple tags, depending on the context
that they appear in. Wind for example is a noun in the context of weather, and is a
verb that refers to coiling something. [3] reports that in the Brown corpus, which is
used in this study and describe in section 3.1 in detail, over 40% of the words are
syntactically ambiguous. Thus, ambiguity resolution is the key challenge in tagging.

Taggers can be divided into systems that are rule-based, stochastic and
transformation-based [6]. Stochastic taggers exploit the power of probabilities and
machine learning techniques in order to disambiguate and tag sequences of words
[10]. One widely and successfully applied approach to statistical modeling is
Hidden Markov Models (HMM) [1]. In the domain of speech recognition, HMM has
become the favored, state of the art model [8]. HMM are also used for tagging,
where the most accurate systems achieve errors rates of less than four percent [4].
Most of the existent HMM taggers are trained with labeled data (e.g. [3][12]), while
fewer ones use unlabeled data to train a HMM tagger based on expectation
maximization (EM) (e.g. [5]). Based on the applicability of stochastic approaches
for syntactical tagging and the potentially low error rates, I decided to pursue this

 2

venue for this project. This work is furthermore motivated by my current research
on semantic network analysis, where I expect knowledge about each word’s POS to
facilitate ontological coding.

2 Method

Markov Models (MM) model the probabilities of a linear sequence of non-
independent events. Applying MM to tagging aims to find the most likely sequence
of POS on the sentence level. Not assuming independence among the observations
enables us to account for the fact that the words in a sentence may depend on each
other, especially in the case of meaningful N-grams, such as Department of Labor.
MM are applicable if the limited horizon assumption (future elements in a sequence
are conditionally independent of past elements, given the present element) and the
time invariance assumption (probabilities are stationery) hold truth [4][6]. Note that
the latter assumption is a theoretical one; in practice, language is a dynamic system,
in that rules (syntax) and elements (vocabulary) emerge and vanish over time and
across places. Relating the outlined assumptions to tagging empowers us to exploit
and combine every word’s probability and context, as given by a word’s
predecessor(s), if available in training data. HMM, a probabilistic function of MM,
brings these two pieces of information together by finding the tag sequence that
maximizes the likelihood of the product of word probability (P(word | tag)) and tag
sequence probability (P(tag | previous n tags)).

In tagging, the true sequence of POS that underlies an observed piece of text is
unknown, thus forming the hidden states. The learner aims to find the sequence of
hidden states that most probably has generated the observed sequence. This task is
referred to as decoding, which means that given a set of observations (X) and a
model (µ), we want to reveal the underlying Markov chain that is probabilistically
linked to the observed states. Model µ consists of three parameters [8]:

1. Initial state probabilities (π). This is a vector that quantifies the probability
of the first hidden state (tag) in a sentence. Since the first word in a
sentence has no predecessor, I follow the idea of assuming the most
frequent tag that the word has been observed with in the training data as the
most probable tag for this word.

2. Sate transition probabilities (aij), stored in a transition matrix, quantify the
likelihood of observing one hidden state given the previous hidden state.

3. State emission probabilities (bij), stored in a confusion matrix, specify the
probabilities of observing a particular state (word) while the HMM is in a
certain hidden state.

When training a tagger in a supervised fashion, these parameters are estimated from
the learning data. In fact, parameters estimation during training is a visible Markov
process, because the surface pattern (words) and underlying MM (POS sequence)
are fully observed. In contrast to that, the process of applying the trained MM to
label unseen data truly represents a HMM, because the hidden sequence is unknown.

2 .1 Algor i thm for Implement ing HMM

How can decoding be efficiently implemented? One classical strategy is the Viterbi
algorithm [11]. The essential intuition behind the Viterbi algorithm and its main
advantage are the reduction of the complexity of examining every full path through
a trellis by recursively finding partial probabilities (δ) for the most likely path from
one state to the next. A trellis represents the related search space; that is a matrix of

 3

all hidden states and connections (transitions) between them along a sequence of
observed states. The Viterbi algorithm requires three steps for searching and
identifying one complete and most probable route through the trellis [6]:

Viterbi algorithm) | j = X O, P(X, max = (t) j t
X

µδ

where X = X1 … Xt-1 and O = output sequence = O1 … O t-1

1. Initialization Nj1, = (1) j j ≤≤πδ

2. Induction Nj1 ,b a (t) i max = 1)(t j otijij
Ni1

≤≤+
≤≤
δδ

Store backtrace Nj1 ,b a max arg = 1)+(t otijiji
Ni1

≤≤
≤≤

δψ j

where (t) jψ = storage of node of incoming arc to most probable path
3. Termination and path (most likely tag sequence) readout (by backtracking)

1)(T max arg ˆ i

Ni1
1 +=

≤≤
+ δTX

1)+(t ˆ 1 ˆ += TXtX ψ

1)(T max)ˆ(i
Ni1

+=
≤≤
δXP

2 .2 Looking a t Vi terb i ’ s p ieces through a magni fy ing g lass

In this paper, I examine the performance of the Viterbi algorithm with respect to
accuracy in more detail by identifying the partial accuracy gain that the different
steps or components that the Viterbi algorithm involves account for. Specifically, I
determine computationally how much of the total accuracy that the implementation
of Viterbi approximation as specified above achieves can be attributed to the
consideration of a) partial probabilities (δ), back pointers (ψ) and backtracking, b)
initial, transition and confusion probabilities, and c) probabilities of single words.

Point a) represents the heart of the Viterbi algorithm. It is the combination of the
forward algorithm, back pointers and backtracking that enables Viterbi to find the
globally best path through a trellis. Further on, I refer to point a) as Viterbi.

Point b) represents the key idea of HMM, which is contained in the initialization
and part of the induction step of the Viterbi algorithm. I suggest that the numeric
difference between points a) and b) represents the accuracy gain that Viterbi can
provide over the mere concatenation of tags that are chosen as the maximal products
out of all combination of state transition and emission probabilities between
subsequent words. In short, the difference between a) and b) represents the
difference between a globally versus a locally maximal solution. Here I define local
maximum as the outcome of induction that excludes δ from computation. Further
on, I refer to point b) as HMM.

Point c) resembles the initialization and initial state probabilities as described earlier
in this section; disregarding the impact of a word’s predecessor on a word’s POS
and not making use of the relaxed independence assumption among words in MM.
In HMM and Viterbi, the computation of point c) applies to every first word in a
sentence as well as one word sentences. Further on, I refer to point c) as the
Unigram Model (UM).

I suggest that knowledge of the contribution of points b) and c) to the total accuracy
of Viterbi is relevant for people who need an intimate understanding of the

 4

algorithm and its components, e.g. in order to fine-tune or modularly modify
respective systems.

3 Experiment

3 .1 Data

The data set used for training and validation is the tagged version of the Brown
Corpus from the Penn Treebank 3 (PTB) corpus [7]. The PTB collection contains
2,499 news stories from over three years of the Wall Street Journal. Every word in
the corpus is annotated with at least one out of 36 possible tags. I implemented a
routine that collects the data, which is stored in 500 data files that are organized in
15 folders on a protected web site, and stores them locally on my system.

In cases where the authors of the PTB were uncertain about the best POS for a word,
e.g. when a word was syntactically ambiguous, they assigned multiple tags in a non-
standardized order [7]. The example England-born/NNP|VBN means that England-
born might be a singular proper noun as well as past-participle verb. I performed
several qualitative checks (human reasoning about the best out of the offered tags)
on randomly drawn instances of this issue from PTB, which convinced me on the
random order of multiple tags per word. Therefore, I decided to consistently
consider only the first POS in all cases of tag indeterminacy.

3 .2 Order o f HMM

In a first order HMM, only one precedent tag is considered (n=1). This resembles
the bi-gram model. One might expect N-grams of sizes larger than two to lead to
more accurate predictions, because word sequences might depend not only on one,
but multiple predecessors (e.g. Department of Labor). Previous research has shown
that such an approach results in less and sparser training data due to the lack of local
histories for the beginning of sentences [6]. This can pose a serious disadvantage if
sentences in the training data are rather short on average, or if comas instead of
sentence marks are considered as delimiters. The average sentence in the PTB 3 has
a length of 19.8 words [9]. Thus, a shift from a first order HMM to a second order
HMM would reduce the amount of training data by about 5.05%, and in addition to
that make it sparser. For these reasons, I decided to work with a first-order HMM.

3 .3 Smooth ing

The implementation of the proposed system required cautious handling of small
numbers and zero probabilities at various points. First, propagating and multiplying
partial probabilities in the induction step of Viterbi led to number underflows. This
issue can be handled during training: In order to eliminate this problem, I used the
natural logs of the transition and emission probabilities, and changed the related
multiplications into summations. Note that this problem does not apply to the other
two algorithms that were implemented, because both of them disregard partial
probabilities.

Second, words and state sequences that have not been observed in the training data,
but do occur in the evaluation data, will cause

a) Zero probability in the induction step of Viterbi. As a result, an entire
vertical column in the trellis (all δ for step i) would have zero probabilities,
and thus the propagation of most probable paths would break.

 5

b) Accuracy losses for all three models during evaluation. This is because
“unknown” never matches the tag that the labeled comparison set suggests
for a word. In an initial ten-fold validation test (described in detail in
section 3.4), unknown words accounted for 3.94% of the words, with each
of them contributing to an increase in the error rate.

Problems 2a) and 2b) depend on the test data: even a model trained on a humongous
training set is likely to encounter unknown words when being applied to unseen
data. This issue represents the downside of the time-invariance assumption. It
occurs e.g. when new names for people, organizations or products are introduced or
combined. To circumvent problems 2a) and b) I implemented two sets of strategies:

Zero probabilities for transition and emission are avoided by adding the words that
are newly encountered during evaluation to the confusion matrix and tagging them
as ”UNKNOWN”. This leads to emission probabilities different from zero for new
words. Next, transition probabilities that involve the UNKNOWN tag have not been
observed previously and therefore equal zero, thus stopping the propagation of the
most likely paths through the trellis. To resolve this problem I assigned a small
probability (minProb) to the affected transitions: P (t | t=UNKNOWN) = minProb
and P(t=UNKNOWN | t) = minProb. For this application I chose a ln(minProb) = -
100,000,000. This solution follows the Adding One strategy [2], which in addition
to linear interpolation is a frequently applied smoothing technique in tagging [6].

Unknown words are passed to a post-processing routine that applies a set of rules in
order to re-label unknown words with an actual POS. The best-performing
unknown-word resolution techniques in tagging use information about the word’s
spelling [12][4]. Following this idea, I analyzed the unknown words that resulted
from multiple evaluation runs in detail in order to find regularities in their
association with certain POS. Based on this analysis, I implemented four types of
orthographic rules for tagging unknown words. I assume these rules not only to be
corpus-specific, but also to be of general applicability: Words involving a digit are
tagged as numbers (CD). Capitalized words are tagged as singular proper nouns
(NNS). Words ending in one out of 16 inflectional or derivational endings are
tagged with the respective POS (e.g. –ing tagged as gerund (VBG)). Every
remaining unknown word is labeled as singular or mass noun (NN).

3 .4 Evaluat ion

In order to determine the accuracy of Viterbi (globally maximal solution), HMM
(locally maximal solution), and UM (probabilistically maximal solution), multiple
ten-fold cross validations were performed. The validation was implemented by first
randomly breaking the full corpus (500 files, about 1.07 million words) into ten
partitions. Then, nine folds (450 files, 965,828 words in one full ten-fold run) were
used for training. Finally, I removed all tags from the remaining fold (50 files,
107,314 words in one run), used the three algorithms to tag the data in the tenth
fold, compared the automatically assigned tags to the original labeling of the tenth
fold, and recorded all deviations as errors. This procedure was repeated ten times1
and the error rates were averaged.

Typically, taggers are evaluated by running the Gold Standard test and/ or
comparing the results to a Unigram Baseline test [4]. The Gold Standard represents
the performance measure - the accuracy rates for Viterbi and HMM - by determining
the portion of tagged words that the tagger and a human-labeled validation set agree

1 Elapsed running time for training all three models, performing a full ten-fold run, and reporting
averaged error rates is about 10.5 minutes on an IBM T60p Intel CoreDuo2.16 GHz with 2 GB of RAM.

 6

upon. The Unigram Baseline test follows the simplifying assumption that every
word and its POS are context-independent, thus associating every word with the tag
that the word has been most frequently observed with in the training set. In this
project, the UM represents this baseline measure.

The experimental results show that on average, Viterbi achieves 93.9% accuracy,
HMM 93.5%, and UM 88.9%. These numbers do not match, but closely
approximate the best accuracy rates reported for HMM- and Viterbi taggers (96% to
97%), as well as for Baseline taggers (90-91%) [4].

Figure 1: Accuracy per Algorithm
(runs sorted by increasing error)

85.0%

87.5%

90.0%

92.5%

95.0%

1 2 3 4 5 6 7 8 9 10

Ten-Fold Run

A
cc

ur
ac

y

Viterbi HMM UM

Table 1: Statistics on Accuracy
per Algorithms

Viterbi HMM UM
Average 93.87% 93.54% 88.88%
Min 93.69% 93.34% 88.61%
Max 94.18% 93.72% 89.11%
St. Dev. 0.15% 0.15% 0.18%

Figure 2: Partial Accuracy Gain by Algorithm

0%

1%

2%

3%

4%

5%

from UM to HMM from UM to Viterbi from HMM to Viterbi

Switch in Algorithm

In
cr

ea
se

 in
 A

cc
ur

ac
y

 7

How high is the partial accuracy gain that can be attributed to the different
components of the Viterbi algorithm? The findings indicate that the UM alone
achieves almost 89% accuracy (Figure 2). Building on top of that, the switches from
UM to HMM (+4.67%) and from UM to Viterbi (+5.0%) seem significantly
beneficial. In contrast to that, the step from HMM to Viterbi further increased
accuracy by only 0.33%.

In order to further investigate the partial impact of computational routines on
accuracy, I disabled the post-processor, which takes care of tagging unknown
words, and ran a ten-fold validation. The outcome, as shown in Table 2, reveals that
unknown words account for less than half a percent of the error rate per algorithm.
Table 2: Accuracy Loss caused by
Not Handling of Unknown Words

Algorithm Accuracy
without Post-
Processing

Loss due to
Unknown
Words

Viterbi 93.49% 0.38%
HMM 93.25% 0.29%
UM 88.48% 0.40%

Table 3: Averaged Accuracy for 20-fold
validation

Viterbi HMM UM
Average 93.95% 93.66% 88.92%
Min 93.46% 93.24% 88.28%
Max 94.56% 94.35% 89.54%
St. Dev. 0.34% 0.35% 0.36%

Average 0.08% 0.12% 0.05%
Min 0.23% 0.10% 0.33%
Max 0.38% 0.63% 0.43%
St. Dev. 0.19% 0.19% 0.18%

Gain over Ten-Fold

Finally, I aimed to determine how much the size of the training set impacts
accuracy. One might assume that in tagging, a larger training set leads to a lower
error rate, because more words and combinations of hidden and observed states can
be learned. To empirically test for this hypothesis, I performed ten 20-fold
validations (corpus split into 97.5% training data and 2.5% test data). The averaged
results (Table 3) suggest a small accuracy gain (0.05% to 0.12%, depending on
algorithm), while the variation of the results (standard deviation) increases.

4 Conclusions
The algorithms that were implemented, tested and compared performed reasonably
well on tagging unseen texts that were randomly and independently drawn from the
same corpus as the training set. What does reasonably well mean? Assuming that an
average sentence in the PTB corpus is 19.8 words long [8], the tagger, on average,
would mislabel 1.21 (Viterbi), 1.28 (HMM) or 2.21 (UM) words per sentence.

The experimental quantification of the partial information gain due to each
algorithm revealed that UM, a simple probabilistic model used for initializing state
probabilities in HMM and Viterbi, achieves a respectably high accuracy of 88.9%.
However, UM is clearly outperformed by HMM, because this switch between
algorithms leads to an accuracy gain of 4.7%. Viterbi results in the highest accuracy
rate (93.9%), but provides only a slight accuracy gain of 0.33% over HMM.

The empiric identification of the impact of handling unknown words on accuracy
rates leaves us with the insight that implementing reasonable strategies for re-
labeling unknown words as POS can be more beneficial than the upgrade from
HMM to Viterbi. The average gains in tagging accuracy due to an increase in the
size of the training set were lower for all three algorithms than the contributions by
the handling of unknown words. Furthermore, for larger training sets, an increase in
the variation of the results has been observed. This finding might suggest a careful

 8

consideration of this trade-off to researchers before they commit to this strategy.
Especially for UM, the enlarged training set only led to a marginal accuracy gain of
0.05%, which might indicate that the performance limit of this algorithm has been
asymptotically approached by this point.

Several limitations of this project should be tackled in future work. First, the models
were trained and evaluated on one specific data set. Even though this corpus
contains more than a million observations, it still reflects a certain time period, style
(journalistic writing) and range of domains (news paper articles). Applying the
models to data that differs from these features is likely to result in lower accuracy
rates as achieved herein. Second, the focus of the project (accuracy gain due to
different algorithms, handling of unknown words, and training set size) did not
encompass testing of MM of a higher order. For data sets with lengthy sentences,
e.g. academic writing, trigrams or larger N-grams might further improve tagging
accuracy. Finally, all tested algorithms are stochastic taggers; therefore a
comparison to accuracy rates achieved with rule- or transformation-based systems
could be valuable.

Acknowledgements

I am grateful to Alex Rudnicky from CMU for providing the training data to me and
to Yifen Huang, CMU, for discussing the project with me.

References
[1] Baum, L. (1972). An inequality and associated maximization technique in statistical

estimation for probabilistic functions of a Markov process. Inequalities 3: 1-8.
[2] Church, K. (1988). A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text.

2nd Conference on Applied Natural Language Processing, Austin , TX, 136-143.
[3] DeRose, S. (1988). Grammatical category disambiguation by statistical optimization.

Computational Linguistics, 14:31-39.
[4] Jurafsky, D. & Martin, J.H. (2000). Speech and Language Processing. Upper Saddle River,

N.J.: Prentice Hall.
[5] Kupiec, J. (1992). Robust part-of-speech tagging using a hidden Markov model. Computer

Speech and Language, 6: 225-242.
[6] Manning, C. & Schütze, H. (1999). Foundations of Statistical Natural Language Processing.

MIT Press. Cambridge, MA.
[7] Mitchell P.M. Santorini, B., Marcinkiewicz, M.A. & Taylor, A. (1999). Advances Treebank 3.

Linguistic Data Consortium, Philadelphia.
[8] Rabiner L. R. (1989). A Tutorial on Hidden Markov Models and Selected Applications in

Speech. Recognition. Proc. IEEE 77(2): 257-285.
[9] Riezler, S. et al. (2002). Parsing the Wall Street Journal using a lexical-functional grammar

and discriminative estimation techniques. Pro. 40th Annual Meeting of the Association for
Computational Linguistics, Philadelphia, PA, USA.

[10] Stolz, W.S., Tannenbaum, P.H. & Carstensen, F.V. (1965). Stochastic Approach to the
Grammatical Coding of English. Communications of the ACM 8: 399–405.

[11] Viterbi, A. J. (1967). Error bounds for convolutional codes and asymptotically optimal
decoding algorithm. IEEE Transactions on Information Theory 13: 260-269.

[12] Weischedel, R., Meter, M., Schwartz, R., Ramshaw, L., & Palmucci, J. (1993). Coping with.
ambiguity and unknown words through probabilistic models. Computational Linguistics,
19 (2): 359-382.

