CS 3800, Spring 2010

Homework 1

Assigned: Friday, 15 January 2010 Due: Friday, 22 January 2010

Good students should get at least 50 of the 100 possible points.

- 1. [5 pts] Write down the formal (5-tuple) description of the second DFA pictured in exercise 1.1 on page 83 of the textbook (the one labelled M_2).
- 2. [4 pts] Draw the state transition diagram for the DFA whose formal description is

$$(\{q_1, q_2, q_3, q_4\}, \{a, b, c\}, \delta, q_1, \{q_2, q_3\})$$

where δ is the function listed within the following table:

	a	b	С
q_1	q_1	q_1	q_2
q_2	q_2	q_2	q_3
q_3	q_4	q_4	q_3
q_4	q_4	q_4	q_4

- 3. [8 pts] For each of the following languages draw the state transition diagram for a DFA with alphabet $\{0,1\}$ that recognizes the language.
 - (a) $\{0, 1, 10, 11\}$
 - (b) $\{w \mid w \text{ contains at least two 0s}\}$
 - (c) $\{w \mid w \text{ contains at most four } 0s\}$
 - (d) $\{w \mid w \text{ starts with 1 and ends with 1}\}$
 - (e) $\{w \mid w \text{ contains an even number of 0s and an odd number of 1s}\}$
 - (f) $\{w \mid w \text{ is a binary numeral that is divisible by } 3\}$
 - (g) $\{w \mid w \text{ is a binary numeral that is divisible by } 7\}$
 - (h) $\{w \mid w \text{ there exist strings } x \text{ and } y \text{ such that } w = x1101y\}$
- 4. [5 pts] Do exercise 1.12 in the textbook.
- 5. [5 pts] Prove that the regular languages are closed under intersection.
- 6. [5 pts] Do exercise 1.14(a) in the textbook.
- 7. [5 pts] Do both parts of exercise 1.17 in the textbook.
- 8. [5 pts] Prove the following theorem. If B is a language over an alphabet Σ , and $B = B^*$, then $BBB \subseteq B$.
- 9. [10 pts] Let $L = \{w \mid w \text{ is a binary numeral with more 0s than 1s}\}$. Is L a regular language? If L is regular, prove it is regular. If L is not regular, prove it is not regular.

- 10. [8 pts] For each of the following languages, write down a regular expression whose value is the language.
 - (a) {01, 11, 101, 111}
 - (b) $\{w \mid w \text{ is a binary numeral that contains at least three 1s}\}$
 - (c) $\{w \mid w \text{ is a binary numeral that starts with } 11 \text{ and ends with } 00\}$
 - (d) $\{w \mid w \text{ is a binary numeral that starts with } 10 \text{ and ends with } 00\}$
 - (e) $\{w \mid w \text{ is a binary numeral that contains an even number of 0s and an odd number of 1s}\}$
 - (f) $\{w \mid w \text{ is a binary numeral that is divisible by } 3\}$
 - (g) $\{w \mid w \text{ is a binary numeral that is divisible by 5}\}$
 - (h) $\{w \mid w \text{ is a binary numeral and there exist strings } x \text{ and } y \text{ such that } w = x101y\}$
- 11. [10 pts] Do problem 1.31 in the textbook.
- 12. [5 pts] Do problem 1.32 in the textbook.
- 13. [5 pts] Do problem 1.33 in the textbook.
- 14. [5 pts] Do problem 1.34 in the textbook.
- 15. [5 pts] Do problem 1.35 in the textbook.
- 16. [10 pts] Let $L = \{w \mid x \text{ is a binary numeral}, y \text{ is the reverse of } x, \text{ and } w = xy\}$. Is L a regular language? If L is regular, prove it is regular. If L is not regular, prove it is not regular.