```
CS 3800, Fall 2015 (Clinger's section)
Homework 1 (70 points)
Assigned: Friday, 11 September 2015
Due: Friday, 18 September 2015
```

1. [5 pts] For each of the following set operations, specify the result by listing its elements inside curly braces.
(a) $\{1,2\} \cup\{2,3,4\}=$
(b) $\{1,2\} \cap\{2,3,4\}=$
(c) $\{1,2\}-\{2,3,4\}=$
(d) $\{1,2,3\}-\{1,4\}=$
(e) $\{1,2,3\} \times\{3,4\}=$
2. [4 pts] Write out each of the following power sets by listing their elements inside curly braces.
(a) $\mathcal{P}(\emptyset)=$
(b) $\mathcal{P}(\{5\})=$
(c) $\mathcal{P}(\{5,6\})=$
(d) $\mathcal{P}(\{5,6,7\})=$
3. [7 pts] If S is any set, then we use the notation $|S|$ to indicate the number of elements in S. Suppose A, B, and C are sets with $|A|=3,|B|=7$, and $|C|=5$. Compute the number of elements in each of the following sets.
(a) $|A \times A|=$
(b) $|B \times C|=$
(c) $|A \times B \times C|=$
(d) $|\mathcal{P}(A)|=$
(e) $|\mathcal{P}(B)|=$
(f) $|\mathcal{P}(A \times C)|=$
(g) $|\mathcal{P}(A \times B)|=$
4. [5 pts] For any $n \in \mathcal{N}$, we say n is even if and only if there exists $m \in \mathcal{N}$ such that $n=2 m$. We say n is odd if and only if there exists $m \in \mathcal{N}$ such that $n=2 m-1$. From these definitions, give a rigorous proof that the sum of two odd numbers is even.
5. [5 pts] Give a rigorous proof that the product of two odd numbers is odd.
6. [5 pts] Using the definitions above, give a rigorous proof that there is no largest odd number.
7. [5 pts] Write down the formal (5-tuple) description of the DFA pictured in example 1.68(a) on page 76 of the textbook.
8. [4 pts] Draw the state transition diagram for the DFA whose formal description is

$$
\left(\left\{q_{1}, q_{2}, q_{3}\right\},\{a, b\}, \delta, q_{1},\left\{q_{1}, q_{2}\right\}\right)
$$

where δ is the function listed within the following table:

	a	b
q_{1}	q_{2}	q_{1}
q_{2}	q_{3}	q_{1}
q_{3}	q_{3}	q_{3}

9. [4 pts] Describe the language recognized by the DFA whose formal description was given above.
10. [16 pts] For each of the following languages, draw the state transition diagram for a DFA with alphabet $\{0,1\}$ that recognizes the language.
(a) $\}$
(b) $\{\epsilon\}$
(c) $\{01,10\}$
(d) $\{w \mid w$ contains at least one 0$\}$
(e) $\{w \mid w$ starts with 0 and ends with 0$\}$
(f) $\{w \mid w$ contains an odd number of 0 s and an odd number of 1 s$\}$
(g) $\{w \mid w$ is a binary numeral that is divisible by 3$\}$
(h) $\{w \mid w$ there exist strings x and y such that $w=x 101 y\}$
11. [5 pts$]$ Do problem 1.37 in the textbook.
12. [5 pts] Prove the following theorem. If B is a language over an alphabet Σ, and $B=B^{*}$, then $B B \subseteq B$.
