
iv erilog(1) $Date: 2003/02/22 04:12:49 $ iv erilog(1)

NAME
iv erilog - Icarus Verilog compiler

SYNOPSIS
iverilog [-ESVv] [-Cpath] [-ccmdfile] [-g1|-g2|-g3.0] [-Dmacro[=defn]] [-pflag=value] [-Iincludedir]
[-mmodule] [-Mfile] [-Nfile] [-ooutputfilename] [-stopmodule] [-ttype] [-Tmin/typ/max] [-Wclass] [-ypath]
sourcefile

DESCRIPTION
iverilog is a compiler that translates Verilog source code into executable programs for simulation, or other
netlist formats for further processing. The currently supported targets are vvp for simulation, and xnf and
fpga for synthesis. Other target types are added as code generators are implemented.

OPTIONS
iverilog accepts the following options:

-Bbase The iverilog program uses external programs to preprocess and compile the Verilog source. Nor-
mally, the path used to locate these tools is built into the iverilog program. However, the -B
switch allows the user to select a different set of programs. The path given is used to locate ivlpp,
ivl and the VPI modules.

-cfile This flag specifies an input file that contains a list of Verilog source files. This is similar to the
command file of other Verilog simulators, in that it is a file that contains the file names instead of
taking them on the command line. See Command Files below.

-Cpath This flag selects the driver configuration file to use. Normally, the iverilog program will read its
configuration file from /usr/lib/ivl/iverilog.conf (or the install path configured at compile time)
but the user can specify the path to a different configuration file. This is useful when testing new
configuration files. See the installed configuration file for a summary of the file format.

-Dmacro
Defines macro macro with the string ‘1’ as its definition. This form is normally only used to trig-
ger ifdef conditionals in the Verilog source.

-Dmacro=defn
Defines macro macro as defn.

-E Preprocess the Verilog source, but do not compile it. The output file is the Verilog input, but with
file inclusions and macro references expanded and removed. This is useful, for example, to pre-
process Verilog source for use by other compilers.

-g1|-g2|-g3.0
Select the Verilog language generation to support in the compiler. This selects between
IEEE1364-1995(1), IEEE1364-2001(2), or SystemVerilog 3.0(3.0). Normally, Icarus Verilog
defaults to the latest known generation of the language. This flag is most useful to restrict the lan-
guage to a set supported by tools of specific generations, for compatibility with other tools.

-Iincludedir
Append directory includedir to list of directories searched for Verilog include files. The -I switch
may be used many times to specify several directories to search, the directories are searched in
the order they appear on the command line.

-Mpath Write into the file specified by path a list of files that contribute to the compilation of the design.
This includes files that are included by include directives and files that are automatically loaded
by library support. The output is one file name per line, with no leading or trailing space.

-mmodule
Add this module to the list of VPI modules to be loaded by the simulation. Many modules can be
specified, and all will be loaded, in the order specified. The system module is implicit and always

Version $Date: 2003/02/22 04:12:49 $ 1

iv erilog(1) $Date: 2003/02/22 04:12:49 $ iv erilog(1)

included.

-Npath This is used for debugging the compiler proper. Dump the final netlist form of the design to the
specified file. It otherwise does not affect operation of the compiler. The dump happens after the
design is elaborated and optimized.

-o filename
Place output in the file filename. If no output file name is specified, iverilog uses the default name
a.out.

-pflag=value
Assign a value to a target specific flag. The -p switch may be used as often as necessary to spec-
ify all the desired flags. The flags that are used depend on the target that is selected, and are
described in target specific documentation. Flags that are not used are ignored.

-S Synthesize. Normally, if the target can accept behavioral descriptions the compiler will leave pro-
cesses in behavioral form. The -S switch causes the compiler to perform synthesis even if it is not
necessary for the target. If the target type is a netlist format, the -S switch is unnecessary and has
no effect.

-s topmodule
Specify the top level module to elaborate. Icarus Verilog will by default choose modules that are
not instantiated in any other modules, but sometimes that is not sufficient, or instantiates too
many modules. If the user specifies one or more root modules with -s flags, then they will be used
as root modules instead.

-Tmin|typ|max
Use this switch to select min, typ or max times from min:typ:max expressions. Normally, the
compiler will simply use the typ value from these expressions (with a warning) but this switch
will tell the compiler explicitly which value to use. This will suppress the warning that the com-
piler is making a choice.

-ttarget Use this switch to specify the target output format. See the TARGETS section below for a list of
valid output formats.

-v Turn on verbose messages. This will print the command lines that are executed to perform the
actual compilation, along with version information from the various components, as well as the
version of the product as a whole.

-V Print the version of the compiler, and exit.

-Wclass Turn on different classes of warnings. See the WARNING TYPES section below for descriptions
of the different warning groups. If multiple -W switches are used, the warning set is the union of
all the requested classes.

-ylibdir Append the directory to the library module search path. When the compiler finds an undefined
module, it looks in these directories for files with the right name.

MODULE LIBRARIES
The Icarus Verilog compiler supports module libraries as directories that contain Verilog source files. Dur-
ing elaboration, the compiler notices the instantiation of undefined module types. If the user specifies
library search directories, the compiler will search the directory for files with the name of the missing mod-
ule type. If it finds such a file, it loads it as a Verilog source file, they tries again to elaborate the module.

Library module files should contain only a single module, but this is not a requirement. Library modules
may reference other modules in the library or in the main design.

TARGETS
The Icarus Verilog compiler supports a variety of targets, for different purposes, and the -t switch is used to
select the desired target.

Version $Date: 2003/02/22 04:12:49 $ 2

iv erilog(1) $Date: 2003/02/22 04:12:49 $ iv erilog(1)

null The null target causes no code to be generated. It is useful for checking the syntax of the Verilog
source.

vvp This is the default. The vvp target generates code for the vvp runtime. The output is a complete
program that simulates the design but must be run by the vvp command.

xnf This is the Xilinx Netlist Format used by many tools for placing devices in FPGAs or other pro-
grammable devices. The Icarus Verilog XNF code generator can generate complete designs or
XNF macros that can be imported into larger designs by other tools. (This target is obsolete, use
the fpga target instead.)

fpga This is a synthesis target that supports a variety of fpga devices, mostly by EDIF format output.

WARNING TYPES
These are the types of warnings that can be selected by the -W switch. All the warning types (other then
all) can also be prefixed with no- to turn off that warning. This is most useful after a -Wall argument to
suppress isolated warning types.

all This enables all supported warning categories.

implicit This enables warnings for creation of implicit declarations. For example, if a scalar wire X is
used but not declared in the Verilog source, this will print a warning at its first use.

portbind
This enables warnings for ports of module instantiations that are not connected but probably
should be. Dangling input ports, for example, will generate a warning.

timescale
This enables warnings for inconsistent use of the timescale directive. It detects if some modules
have no timescale, or if modules inherit timescale from another file. Both probably mean that
timescales are inconsistent, and simulation timing can be confusing and dependent on compila-
tion order.

COMMAND FILES
The command file allows the user to place source file names and certain command line switches into a text
file instead of on a long command line. Command files can include C or C++ style comments, as well as #
comments, if the # starts the line.

file name
A simple file name or file path is taken to be the name of a Verilog source file. The path starts
with the first non-white-space character. Variables are substitued in file names.

-y libdir A -y token prefixes a library directory in the command file, exactly like it does on the command
line. The parameter to the -y flag may be on the same line or the next non-comment line.

Variables in the libdir are substituted.

+incdir+includedir
The +incdir+ token in command files gives directories to search for include files in much the
same way that -I flags work on the command line. The difference is that multiple +includedir
directories are valid parameters to a single +incdir+ token, although you may also have multiple
+incdir+ lines.

Version $Date: 2003/02/22 04:12:49 $ 3

iv erilog(1) $Date: 2003/02/22 04:12:49 $ iv erilog(1)

Variables in the includedir are substituted.

+libext+ext
The +libext token in command files fives file extensions to try when looking for a library file.
This is useful in conjunction with -y flags to list suffixes to try in each directory before moving on
to the next library directory.

+libdir+dir
This is another way to specify library directories. See the -y flag.

+libdir-nocase+dir
This is like the +libdir statement, but file names inside the directories declared here are case
insensitive. The missing module name in a lookup need not match the file name case, as long as
the letters are correct. For example, "foo" matches "Foo.v" but not "bar.v".

+define+NAME=value
The +define+ token is the same as the -D option on the command line. The value part of the
token is optional.

+toupper-filename
This token causes file names after this in the command file to be translated to uppercase. This
helps with situations where a directory has passed through a DOS machine, and in the process the
file names become munged.

+tolower-filename
This is similar to the +toupper-filename hack described above.

VARIABLES IN COMMAND FILES
In certain cases, iverilog supports variables in command files. These are strings of the form "$(varname)",
where varname is the name of the environment variable to read. The entire string is replaced with the con-
tents of that variable. Variables are only substitued in contexts that explicitly support them, including file
and directory strings.

Variable values come from the operating system environment, and not from preprocessor defines elsewhere
in the file or the command line.

EXAMPLES
These examples assume that you have a Verilog source file called hello.v in the current directory

To compile hello.v to an executable file called a.out:

iv erilog hello.v

To compile hello.v to an executable file called hello:

iv erilog -o hello hello.v

To compile and run explicitly using the vvp runtime:

iv erilog -ohello.vvp -tvvp hello.v

Version $Date: 2003/02/22 04:12:49 $ 4

iv erilog(1) $Date: 2003/02/22 04:12:49 $ iv erilog(1)

To compile hello.v to a file in XNF-format called hello.xnf

iv erilog -txnf -ohello.xnf hello.v

AUTHOR
Steve Williams (steve@icarus.com)

SEE ALSO
vvp(1), <http://www.icarus.com/eda/verilog/>

COPYRIGHT
Copyright © 2002 Stephen Williams

This document can be freely redistributed according to the terms of the
GNU General Public License version 2.0

Version $Date: 2003/02/22 04:12:49 $ 5

