
Lab 8: Multicycle Processor (Part 1) 0.0

Introduction
In this lab and the next, you will design and build your own multicycle MIPS processor! Your processor should
match the design from the text reprinted below (Figure 5.28 of Computer Organization and Design). It is divided
into four units: the cunit (control), eunit (execution), iunit (instructions) and munit (memory). Note that the
munit contains the shared memory used to hold both data and instructions. Also note that the cunit comprises
both the decoder using OP(5:0) and the ALUCONTROL logic taking ALUOP(1:0) and the FUNCT code from
the low bits of the INSTRUCTION. The units have the inputs and outputs listed in Figures 2–5.

FIGURE 1 Multicycle Processor Datapath.

Cunit Interface Signals

CLK Input REGWRITE Output

RESET Input REGDST Output

OP (5:0) Input IORD Output

FUNCT (3:0) Input MEMREAD Output

ZERO Input MEMWRITE Output

FIGURE 2 Cunit Interface Signals.

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU

Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–26]

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0

1

2

3

M
u
x

0

1

2

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory

munit

iunit

cunit

eunit

cunit

MemData

4

Instruction
[15–11]

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

26 28

Outputs

Control

Op
[5–0]

ALU
control

PC [31–28]

Instruction [25-0]

Instruction [5–0]

Jump
address
[31–0]
1

Your task in this lab will be to design and test a microcoded state machine for the cunit and to work out a test
program for the processor as a whole. In the next lab, you will design the remaining parts of the multicycle pro-
cessor, the eunit, munit and iunit, and put all four units together and test them. You will be much more on your
own to complete these labs than you have been in the past, but may reuse any of your hardware from previous labs.

Test Program
Your first task will be to prepare a simple test program, shown below, to test all of the instructions. The program
doesn’t do anything terribly interesting, but will prove your processor is working correctly if it ends in an infinite
loop at done with the proper value in $t4. Translate the program to machine language and predict the values of

PCSOURCE (1:0) Output MEMTOREG Output

ALUCONTROL (3:0) Output IRWRITE Output

ALUSRCB (1:0) Output PCENABLE Output

ALUSRCA Output

Iunit Interface Signals

Clk Input

Reset Input

Instruction [31:0] Input

ALUResult [31:0] Input

ALUOut [31:0] Input

PCEnable Input

PCSource [1:0] Input

PC [31:0] output

FIGURE 3 Iunit Interface Signals.

Munit Interface Signals

CLK input MEMREAD input

RESET input MEMWRITE input

PC (31:0) input IRWRITE input

ALUOUT (31:0) input INSTRUCTION (31:0) output

WRITEDATA (31:0) input MEMORYDATA (31:0) output

IORD input

FIGURE 4 Munit Interface signals.

Eunit Interface Signals

CLK input ALUSRCA input

RESET input ALUSRCB (1:0) input

INSTRUCTION (31:0) input ALUCONTROL (3:0) input

MEMORYDATA (31:0) input ZERO output

PC (31:0) input ALURESULT (31:0) output

REGDST input ALUOUT (31:0) output

MEMTOREG input WRITEDATA (31:0) Output

REGWRITE input

FIGURE 5 Eunit Interface signals.

Cunit Interface Signals

FIGURE 2 Cunit Interface Signals.
2

major signals after each cycle. You will use this program in the next lab as you debug your processor. Note that
the constants 42, 2C and 28 are all in hexadecimal, not decimal. Start the program at address 0 in memory.
Recall that branches are counted relative to the next instruction, so the beq branches back by –7 instructions
(FFF9).

addi $t0, $0, 42
j later

earlier: addi $t1, $0, 4
sub $t2, $t0, $t1
or $t3, $t2, $t0
sw $t3, 2C($0)
lw $t4, 28($t1)

done: j done
later: beq $0, $0, earlier

What result should be in $t4 when the program reaches done?
Before debugging your multicycle processor, you will need to have a good idea of what to expect out of the pro-

cessor. Complete Figure 12 at the end of this lab showing the values of the FSM state, PC, INSTRUCTION, SRCA,
SRCB, ALURESULT and ZERO at each cycle for your program. The FSM states (0 through 9) are numbered as in
Figure 5.38 of Computer Organization and Design; addi requires two additional states, A and B, as shown in
Figure 7. When Figure 7 indicates a don’t care, you can leave a ? in Figure 12 indicating the result is implementa-
tion-dependent. Notice that the instruction code is fetched during state 0 and therefore not updated until state 1
of each instruction.

Cunit Design
The cunit is the most complex part of the multicycle processor. It should take the inputs and produce the outputs
described in the unit overview previously. On RESET, the cunit should start at State 0. The cunit should support
the instructions from Figure 5.38 plus addi. The state transition table is shown in Figure 7. Recall that SEQ of 00
means next state, 10 means Dispatch 1, 11 means Dispatch 2, and 01 means Fetch, as defined in Figure 5.7.3 in
CD Section 5.7 on the Companion CD for Computer Organization and Design.

Design your controller using a microcode sequencer, as shown in Figure 6. The microcode storage is a ROM
taking a 4-bit state as input and producing 18 bits of output.

Translate the state transition table in Figure 7 into a series of 5-nibble hexadecimal values (treat the upper two
bits as 0) that can be entered as the contents of the microcode ROM.

The address select logic of the Microcode Sequencer is shown in Figure 8. The dispatch tables are stored in the
ROMs that determine next addresses based on OP(5:0). For example, the Dispatch2 ROM should go to state 3 on
a lw (OP(5:0)=2316) or state 5 on OP(5:0)=2B16).

In Xilinx ISE 4.2, a powerful tool, CORE generator, can be used to set up the memory elements such as RAMs,
ROMs and Register files. Additionally, elements such as bus multiplexers can be generated using CORE generator.
These elements are useful for selecting the correct address for the ROM or for selecting data into the ALU for dif-
ferent cases. For example, here you will probably need a 4-to-1 multiplexer to select an address with a width of 4
bits for the ROM (which has a depth of 16 and a width of 18 bits for each word) where your microcode is stored.
To do so, choose Project New Source, select the source type to be Coregen IP and name your multiplexer, for
example, as “mux4_4bits”. When the CORE generator is launched, the working interface is shown as in Figure 9.
You can use it to generate different kind of modules, but we mainly use the Basic Elements category that includes
memory elements, multiplexers, registers, shifters and pipelining. In this case, double click the Bus Multiplexer
and choose it as the component type. Then you will be asked to enter the component name, number of input buses
and bus width, etc. Make sure it is a Non Registered version. On the left side, a diagram of the symbol will be
shown. When finished, you can click Generate on the left lower corner, and a multiplexer component will be gen-
erated and listed in the Generated Modules in the CORE generator. At the same time, a symbol with the same
name will be available to use for in the schematic editor.

Next you can set up two ROMs for storing the dispatch tables and one ROM for storing the microcode. Before
generating a ROM, you need to use Memory Editor in the CORE generator interface to input the content of the
ROM. Choose Tools Memory Editor, and the interface of Figure 10 is shown. In the case of the microcode ROM,
3

you need 16 words (although you only used 12 words, you need 4-bit address to access the ROM), and each word
is 18 bits wide. When you finish entering all the microcodes at the corresponding addresses, select File Save as
“controlrom”; a controlrom_controlrom.coe file will be generated at the same time. This file can be imported later
to set up the complete 16×18 ROM memory block. Now close the Memory Editor. You should also use memory
editor to input the content for the dispatch ROMs.

Next, you are ready to set up the ROM module. In the CORE generator interface, select Basic Ele-
ments Memory Elements, then select Distributed Memory in the content window by double clicking. Go
through different options for the setup. For example, set Component Name to “controlrom”, and set Depth and
Data Width with the same values as you used for the “controlrom” memory block in the Memory Editor. Check

FIGURE 6 Microcode Sequencer.

S
TA

TE

A
LU

O
P

(1
:0

)

A
LU

S
R

C
A

A
LU

S
R

C
B

(1
:0

)

R
E

G
W

R
ITE

R
E

G
D

S
T

M
E

M
TO

R
E

G

IO
R

D

M
E

M
R

E
A

D

M
E
M

W
R

ITE

IR
W

R
ITE

P
C

S
O

U
R

C
E

(1
:0

)

P
C

W
R

ITE

P
C

W
R

ITE
C

O
N

D

S
E

Q
(1

:0
)

R
O

M
 C

o
nte

nts

0 00 0 01 0 X x 0 1 0 1 00 1 0 00 02148

1 00 0 11 0 X x x 0 0 0 xx 0 0 10

2 00 1 10 0 X x x 0 0 0 xx 0 0 11

3 xx X xx 0 X x 1 1 0 0 xx 0 0 00

4 xx X xx 1 0 1 x 0 0 0 xx 0 0 01

5 xx X xx 0 X x 1 0 1 0 xx 0 0 01

6 10 1 00 0 X x x 0 0 0 xx 0 0 00

7 xx X xx 1 1 0 x 0 0 0 xx 0 0 01

8 01 1 00 0 X x x 0 0 0 01 0 1 01

9 xx X xx 0 X x x 0 0 0 10 1 0 01

A 00 1 10 0 X x x 0 0 0 xx 0 0 00

B xx X xx 1 0 0 x 0 0 0 xx 0 0 01

FIGURE 7 Microcode ROM Contents.

Microprogram counter

Address select logic

Adder

1

Input

Datapath
control
outputs

Microcode
storage

Outputs

Sequencing
control

Op[5:0]

6
4

1
2

4

4

Reset

Plus1[3:0]

Next[3:0]

Sel[1:0]
4

Non Registered. This is shown in Figure 11 below (although this illustration was captured using a different name
for the component).

When this is done, click Next; you will need to load Initial Contents of the memory. Click Load Coefficients to
find the .coe files you just generated from the Memory Editor to store the contents of your ROM. Now you com-
plete the setting of the ROM by clicking Generate button. A ROM called “controlrom” with stored microcodes is
created, and a symbol with the same name is also ready to use for schematic files.

FIGURE 8 Address Select Logic.

FIGURE 9 Xilinx CORE Generator Interface.

Dispatch1
RO
M

Dispatch2
ROM

0000

Plus1(3:0)

Next[3:0]

OP(5:0)

Address Mux
SEQ(1:0)

0 1 2 3

4 4
5

FIGURE 10 Memory Editor Interface.

FIGURE 11 Set up the ROM as Distributed Memory.
6

You can go through a similar procedure to setup your ROMs to store dispatch1 and dispatch2. Both dispatch
ROMs are 4-bits wide and addressed by OP(5:0); so a depth of 64 is available, although you only use a few of the
addresses.

In addition to the address select logic and microcode ROM, the microprogram counter in Figure 6 is neeeded
to interface between the address logic and the microcode ROM. It not only delivers the address from the select
logic to the ROM, but also makes this address available for the calculation of the next address (Plus1, or add ad-
dress with 1). In addition you should be able to reset the state of the counter. You may use a simple data register
to implement the microprogram counter. Explore the CORE generator to setup your register properly.

Now all the major elements are ready for your cunit. Create a schematic for your cunit. The schematic should
include the microcode sequencer from Figure 6 along with logic to compute ALUCONTROL (3:0) from ALU-
OP(1:0) (you can copy this part from your Lab 2) and additional logic to compute PCENABLE from PCWRITE,
PCWRITECOND and ZERO.

There are a number of ways to connect the microcode ROM output bus to the individual outputs. One of the
simpler ways is to draw 18 bus taps and hook each bit of the bus to a buffer, which in turn can drive the output
with the appropriate name.

When you have completed your schematics, simulate the cunit. Develop testbench waveform for the CLK, RE-
SET, OP, FUNCT and ZERO inputs based on Figure 12. Make sure you reset the system in the first clock cycle.
Print out your waveforms showing all of the control outputs at each state. Make sure the outputs match your ex-
pectations. (You haven’t written these expectations, so you’ll have to work them out as you go by looking at the
current state and Figure 7.) If you find any errors, debug your circuit.

Cycle RESET PC INSTRUCTION
FSM
State SRCA SRCB

ALU-
RESULT ZERO

0 1 00 0 0 00 04 04 0

1 1 00 0 0 00 04 04 0

2 0 04 addi

20080042

1 04 108 10C 0

3 0 04 addi

20080042

A 00 42 42 0

4 0 04 addi

20080042

B ?? ?? ?? ?

5 0 04 addi

20080042

0 04 04 08 0

6 0 08 j

08000008

1 08 20 28 0

7 0 08 j

08000008

9 ?? ?? ?? ?

8 0 20 j

08000008

0 20 04 0

9 0 24 beq

1000fff9

1 24 FFFFFFE4 08 0

10 0 24 beq

1000fff9

8 00 00 00 1

11 0 08 beq

1000fff9

08 04 0C 0

12 0 0C addi

20090004

0

13 0 0C addi

20090004

A 00 04 04 0

FIGURE 12 Expected Instruction Trace.
7

14 0 0C addi

20090004

B ?? ?? ?? ?

15 0

16 0

17 0

18 0

19 0 10 sub

01095022

0 10 04 14 0

20 0

21 0

22 0

23 0

24 0 18 sw

ac0b002c

1 18 B0 C8 0

25 0

26 0

27 0

28 0 1C lw

8d2c0028

1 1C A0 BC 0

29 0

30 0

31 0 1C lw

8d2c0028

4 ?? ?? ?? ?

32 0 1C lw

8d2c0028

0 1C 04 20 0

33 0 20 j

08000007

1 20 1C 3C 0

34 0 20 j

08000007

9 ?? ?? ?? ?

35 0 1C j

08000007

0 1C 04 20 0

36 0 20 j

08000007

1 20 1C 3C 0

37 0 20 j

08000007

9 ?? ?? ?? ?

Cycle RESET PC INSTRUCTION
FSM
State SRCA SRCB

ALU-
RESULT ZERO

FIGURE 12 Expected Instruction Trace. (Continued)
8

	Lab 8: Multicycle Processor (Part 1)
	Introduction
	Test Program
	Cunit Design

