Homework 5

- 1. Represent each of the following decimal values in signed 2s-compliment format of 10 bits: 26, -37, 497 and -123.
- 2. Find the decimal values represented by the following signed 2s-complement notations of n = 11 bits:
 - 10110100101
 - 10010010101
- 3. Carry out the following operations in signed 2s-complement form of n = 9 bits:
 - **2**3 + 47
 - -23 + 47
 - $\blacksquare \ 23 47 = 23 + (-47)$
 - -23 47 = -23 + (-47)
- 4. Carry out the following subtractions in signed 2s-complement form of n = 6 bits:
 - 0.6875 0.40625
 - **0.40625 0.6875**
- 5. As discussed in class, an overflow or underflow during addition can be detected by checking if the *CarryIn* and *CarryOut* of the MSB are the same. Prove that this check is valid in general in all six (why six?) possible combinations of the signs of the two operands *A* and *B*, as well as the result A + B, as listed below. All you need to do is to check for each case to confirm that the result will have the wrong sign if and only if C_{in} and C_{out} of the MSB are different.

Operand A	Operand B	Result A+B	C_{in}	C_{out}	right/wrong?
≥ 0	≥ 0	≥ 0			
≥ 0	≥ 0	< 0			
≥ 0	< 0	≥ 0			
≥ 0	< 0	< 0			
< 0	< 0	≥ 0			
< 0	< 0	< 0			

Hint: This is an easy proof as you simply exhaust all the possible cases.