IMD 3.11-6

In More Depth

In More Depth: The Power PC’s Multiply-Add Instruction

The matrix multiply on page 210 relied on a multiply operation and an add
operation, which is typical of many matrix and vector operations. Hence, the
PowerPC has a “fused” multiply-add instruction: a single instruction reads
three operands, multiplies two operands and adds the third to the product, and
writes the sum in the result operand. Hence, the two MIPS floating-point
instructions in the matrix multiply example would be replaced by one in Pow-
erPC. This instruction can increase peak floating-point performance.

Fused multiply-add also performs the two operations and then rounds,
unlike separate multiply and add instructions, which would round after each
operation. The instructions also calculate extra bits for intermediate results to
improve accuracy. Besides being potentially faster, the extra accuracy of fused
multiply-add can also be helpful for calculating divide and square root, and in
software libraries that calculate at higher precision than 64 bits. In fact, Pow-
erPC hardware uses fused multiply-add hardware to calculate divide, and accu-
rate division was the motivation for skipping the round between the two
operations.

3.25 [10] <§§3.5, 3.4> Suppose you have a multiply-add instruction that per-
forms the two operations back to back: fmadd $f0, $f2, $f4, $f6--->
$f0 = $f2 * $f4 + $f6. Convert the following MIPS code into MIPS code
with the fused multiply add instruction:

1.d $f0, -8(3$gp)
1.d $f2, -16(%gp)
1.d $f4, -24(%gp)
mult.d $f0, $f0, $f2
add.d $f0, $f0, $f4
s.d $f0, -8($gp)

3.26 [20] <§3.5> One of the advantages of the fused multiply-add instruction
is its increased precision. This is because it does not round between the multiply
and add step. When rounding, use a guard, round, and a sticky bit, and round
using round to nearest. Consider the following IEEE 754 single precision num-
bers with x = 0100 0000 0110 0000 0000 0000 0010 0001, ¥ = 0100 0000 1010
0000 0000 0000 0000 0000, and z = 0011 1100 1110 0000 0000 1010 1100
0000

Performx* y + z:

a. With round between the multiply and the add.

two*

b. Without rounding between the multiply and the add.

