

In More Depth

IMD 2.20-5

In More Depth: Tail Recursion

Some recursive procedures can be implemented iteratively without using
recursion. Iteration can significantly improve performance by removing the
overhead associated with procedure calls. For example, consider a procedure
used to accumulate a sum:

int sum (int n, int acc) {
if (n > 0)

return sum(n - 1, acc + n);
else

return acc;
}

Consider the procedure call

sum(3,0)

. This will result in recursive calls to

sum(2,3)

,

sum(1,5)

, and

sum(0,6)

, and then the result 6 will be returned
four times. This recursive call of

sum

 is referred to as a

tail call

, and this exam-
ple use of tail recursion can be implemented very efficiently (assume

$a0

= n

and

$a1 = acc)

:

sum: beq$a0, $zero, sum_exit # go to sum_exit if n is 0
add$a1, $a1, $a0 # add n to acc
addi$a0, $a0, -1 # subtract 1 from n
j sum # go to sum

sum_exit:
move$v0, $a1 # return value acc
jr $ra # return to caller

IMD 2.20-6 In More Depth

2.16 [30] <§2.7> Write a MIPS procedure to compute the nth Fibonacci num-
ber F(n) where

F(n) = 0, if n = 0;
1, if n = 1;
F(n-1) + F(n-2), otherwise.

Base your algorithm on the straightforward but hopelessly inefficient proce-
dure below, which generates a recursive process:

int fib(int n){
if (n == 0)

return 0;
else if (n == 1)

return 1;
else

return fib(n-1) + fib(n-2);

2.17 [30] <§2.7> Write a program as in Exercise 2.15, except this time base
your program on the following procedure and optimize the tail call so as to
make your implementation efficient:

int fib_iter (int a, int b, int count) {
if (count == 0)

return b;
else

return fib_iter(a + b, a, count - 1);

Here, the first two parameters keep track of the previous two Fibonacci num-
bers computed. To compute F(n), you have to make the procedure call
fib_iter(1, 0, n).

2.18 [20] <§2.7> Estimate the difference in performance between your solu-
tion to Exercise 2.15 and your solution to Exercise 2.16.

