
 

Maurice Wilkes learned computer design in a summer workshop from Eckert and
Mauchly and then went on to build the first full-scale, operational, stored-pro-
gram computer—the EDSAC. From that experience he realized the difficulty of
control. He thought of a more centralized control using a diode matrix and, after
visiting the Whirlwind computer in the United States, wrote [Wilkes 1985]:

 

I found that it did indeed have a centralized control based on the use of a ma-
trix of diodes. It was, however, only capable of producing a fixed sequence of 
eight pulses—a different sequence for each instruction, but nevertheless fixed as 
far as a particular instruction was concerned. It was not, I think, until I got 
back to Cambridge that I realized that the solution was to turn the control unit 
into a computer in miniature by adding a second matrix to determine the flow 
of control at the microlevel and by providing for conditional microinstructions. 

 

Wilkes [1953] was ahead of his time in recognizing that problem. Unfortu-
nately, the solution was also ahead of its time: To provide control, micro-
programming relies on fast memory that was not available in the 1950s. Thus
Wilkes’s ideas remained primarily academic conjecture for a decade, although he
did construct the EDSAC 2 using microprogrammed control in 1958 with ROM
made from magnetic cores.

IBM brought microprogramming into the spotlight in 1964 with the IBM 360
family. Before this event, IBM saw itself as a cluster of many small businesses sell-
ing different machines with their own price and performance levels, but also with
their own instruction sets. (Recall that little programming was done in high-level
languages, so that programs written for one IBM machine would not run on
another.) Gene Amdahl, one of the chief architects of the IBM 360, said that man-
agers of each subsidiary agreed to the 360 family of computers only because they
were convinced that microprogramming made it feasible. To be sure of the viabil-
ity of microprogramming, the IBM vice president of engineering even visited
Wilkes surreptitiously and had a “theoretical” discussion of the pros and cons of
microcode. IBM believed that the idea was so important to its plans that it pushed
the memory technology inside the company to make microprogramming feasible.

Stewart Tucker of IBM was saddled with the responsibility of porting software
from the IBM 7090 to the new IBM 360. Thinking about the possibilities of
microcode, he suggested expanding the control store to include simulators, or
interpreters, for older machines. Tucker [1967] coined the term 

 

emulation

 

 for this,
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meaning full simulation at the microprogrammed level. Occasionally, emulation
on the 360 was actually faster than on the original hardware. 

Once the giant of the industry began using microcode, the rest soon followed.
(IBM was over half of the computer industry in 1964, measured in revenue.) One
difficulty in adopting microcode was that the necessary memory technology was
not widely available, but that was soon solved by semiconductor ROM and later
RAM. The microprocessor industry followed the same history, with the limited
resources of the earliest chips forcing hardwired control. But as the resources
increased, the advantages of simpler design, ease of change, and the ability to use a
wide variety of underlying implementations persuaded many to use micropro-
gramming.

In the 1960s and 1970s, microprogramming was one of the most important
techniques used in implementing machines. Through most of that period,
machines were implemented with discrete components or MSI (medium-scale
integration—fewer than 1000 gates per chip), and designers had to choose
between two types of implementations:

 

hardwired control

 

 or 

 

microprogrammed
control

 

. Hardwired control was characterized by finite state machines using an
explicit next state and implemented primarily with random logic. In this era,
microprogrammed control used microcode to specify control that was then
implemented with a microprogram sequencer (a counter) and ROMs. Hardwired
control received its name because the control was implemented in hardware and
could not be easily changed. Microprograms implemented in ROM were also
called 

 

firmware

 

 because they could be changed somewhat more easily than hard-
ware, but not nearly as easily as software. 

The reliance on standard parts of low- to medium-level integration made these
two design styles radically different. Microprogrammed approaches were attrac-
tive because implementing the control with a large collection of low-density gates
was extremely costly. Furthermore, the popularity of relatively complex instruc-
tion sets demanded a large control unit, making a ROM-based implementation
much more efficient. The hardwired implementations were faster, but too costly
for most machines. Furthermore, it was very difficult to get the control correct,
and changing ROMs was easier than replacing a random logic control unit. Even-
tually, microprogrammed control was implemented in RAM, to allow changes late
in the design cycle, and even in the field after a machine shipped. 

With the increasing popularity of microprogramming came more sophisti-
cated instruction sets. Over the years, most microarchitectures became more and
more dedicated to support the intended instruction set, so that reprogramming
for a different instruction set failed to offer satisfactory performance. With the
passage of time came much larger control stores, and it became possible to con-
sider a machine as elaborate as the VAX with more than 300 different instruction
opcodes and more than a dozen memory-addressing modes. The use of RAM to

microprogrammed control A 
method of specifying control 
that uses microcode rather than 
a finite state representation.

firmware Microcode imple-
mented in a memory structure, 
typically ROM or RAM.
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store the microcode also made it possible to debug the microcode and even fix
some bugs once machines were in the field. The VAX architecture represented the
high-water mark for instruction set architectures based on microcode implemen-
tations. Typical implementations of the full VAX instruction set required 400 to
500 Kbits of control store. 

The VAX architecture was laid to rest and replaced by the Alpha architecture,
another RISC architecture. With the disappearance of the VAX, traditional micro-
programming, in which the control is implemented with one major control store,
has disappeared from conventional microprocessor designs. The recent Intel IA-
32 processors, which we described in this chapter, use a mix of direct hardware
translation via the microoperations and a central control store used only for com-
plex instructions. Intel’s newest architecture, the IA-64, originally designed as a
replacement for IA-32, uses a RISC-style instruction set, which can be imple-
mented without a large central control store. 

Of course, control unit design will continue to be a major aspect of all comput-
ers, and the best way to specify and implement the control will vary, just as com-
puters will vary, from streamlined RISC architectures with simple control, to
special-purpose processors with potentially large amounts of more complex and
specialized control. 

The history of the development of interrupts in equally interesting. Professor
Mark Smotherman has assembled a brief history at 

 

http://www.cs.clemson.edu/
~mark/interrupts.html

 

 or in the  library under Section 5.12. Among the notable
innovations are the concept of arithmetic overflow introduced in the Univac-1
and vectored interrupts introduced in Stretch (see Chapter 6  Section 6.13 His-
torical Perspectives).

 

Further Reading 

 

A basic Verilog tutorial is included on the CD. (See  Tutorials) There are also
many books both on Verilog and on digital design using Verilog. 

 

Kidder, T. [1981]. 

 

Soul of a New Machine

 

, Little, Brown, and Co., New York.

 

Describes the design of the Data General Eclipse series that replaced the first DG machines such as the
Nova. Kidder records the intimate interactions among architects, hardware designers, microcoders, and
project management. 

 

Levy, H. M., and R. H. Eckhouse, Jr. [1989]. 

 

Computer Programming and Architecture: The VAX

 

, sec-
ond ed., Digital Press, Bedford, MA.

 

Good description of the VAX architecture and several different microprogrammed implementations.

 

Patterson, D. A. [1983]. “Microprogramming,” 

 

Scientific American

 

 248:3 (March) 36–43.

 

Overview of microprogramming concepts. 



 

5.12-4

 

5.12 Historical Perspective and Further Reading

 

Tucker, S. G. [1967]. “Microprogram control for the System/360,” 

 

IBM Systems J. 

 

6:4, 222–41.

 

Describes the microprogrammed control for the 360, the first microprogrammed commercial machine. 

 

Wilkes, M. V. [1985]. 

 

Memoirs of a Computer Pioneer

 

, MIT Press, Cambridge, MA.

 

Intriguing biography with many stories about industry pioneers and the trials and successes in building
early machines. 

 

Wilkes, M. V., and J. B. Stringer [1953]. “Microprogramming and the design of the control circuits
in an electronic digital computer,” 

 

Proc. Cambridge Philosophical Society

 

 49:230–38. Also reprinted
in D. P. Siewiorek, C. G. Bell, and A. Newell, 

 

Computer Structures: Principles and Examples,

 

McGraw-Hill, New York, 158–63, 1982, and in “The genesis of microprogramming,” in 

 

Annals of
the History of Computing

 

 8:116, 1982.

 

These two classic papers describe Wilkes’s proposal for microcode.


