
Reasoning About Programs
Panagiotis Manolios

Northeastern University

February 6, 2013
Version: 84

Copyright c©2012 by Panagiotis Manolios

All rights reserved. We hereby grant permission for this publication to be used for personal or
classroom use. No part of this publication may be stored in a retrieval system or transmitted
in any form or by any means other personal or classroom use without the prior written
permission of the author. Please contact the author for details.

2

Propositional Logic

The study of logic was initiated by the ancient Greeks, who were concerned with analyzing
the laws of reasoning. They wanted to fully understand what conclusions could be derived
from a given set of premises. Logic was considered to be a part of philosophy for thousands
of years. In fact, until the late 1800’s, no significant progress was made in the field since
the time of the ancient Greeks. But then, the field of modern mathematical logic was born
and a stream of powerful, important, and surprising results were obtained. For example, to
answer foundational questions about mathematics, logicians had to essentially create what
later became the foundations of computer science. In this class, we’ll explore some of the
many connections between logic and computer science.

We’ll start with propositional logic, a simple, but surprisingly powerful fragment of logic.
Expressions in propositional logic can only have one of two values. We’ll use T and F to
denote the two values, but other choices are possible, e.g., 1 and 0 are sometimes used.

The expressions of propositional logic include:

1. The constant expressions true and false: they always evaluate to T and F , respectively.

2. The propositional atoms, or more succinctly, atoms. We will use p, q, and r to denote
propositional atoms. Atoms range over the values T and F .

Propositional expressions can be combined together with the propositional connectives,
which we include the following.

The simplest connective is negation. Negation, ¬, is a unary connective, meaning that it
is applied to a single expression. For example ¬p is the negation of atom p. Since p (or any
propositional expression) can only have one of two values, we can fully define the meaning
of negation by specifying what it does to the value of p in these two cases. We do that with
the aid of the following truth table.

p ¬p
T F
F T

What the truth table tells us is that if we negate T we get F and if we negate F we get
T .

Negation is the only unary propositional connective we are going to consider. Next we
consider binary (2-argument) propositional connectives, starting with conjunction, ∧. The
conjunction (and) of p and q is denoted p∧ q and its meaning is given by the following truth
table.

18 Reasoning About Programs

p q p ∧ q
T T T
T F F
F T F
F F F

Each row in a truth table corresponds to an assignment, one possible way of assigning
values (T or F) to the atoms of a formula. The truth table allows us to explore all relevant
assignments. If we have two atoms, there are 4 possibilities, but in general, if we have n
atoms, there are 2n possible assignments we have to consider.

In one sense, that’s all there is to propositional logic, because every other connective we
are going to consider can be expressed in terms of ¬ and ∧, and almost every question we
are going to consider can be answered by the construction of a truth table.

Next, we consider disjunction. The disjunction (or) of p and q is denoted p ∨ q and its
meaning is given by the following truth table.

p q p ∨ q
T T T
T F T
F T T
F F F

In English usage, “p or q” often means p or q, but not both. Consider the mother who
tells her child:

You can have ice cream or a cookie.

The child is correct in assuming this means that she can have ice cream or a cookie, but not
both.

As you can see from the truth table for disjunction, in logic “or” always means at least
one.

We can write more complex formulas by using several connectives. An example is ¬p∨¬q,
where we use the convention that ¬ binds more tightly than any other connective, so that
the we can only parse the formula as (¬p) ∨ (¬q). We can construct truth tables for such
expressions quite easily. First, determine how many distinct atoms there are. In this case
there are two; that means we have four rows in our truth table. Next we create a column
for each atom and for each connective. Finally, we fill in the truth table, using the truth
tables that specify the meaning of the connectives.

p q ¬p ¬q ¬p ∨ ¬q
T T F F F
T F F T T
F T T F T
F F T T T

Next, we consider implication, ⇒. This is called logical (or material) implication. In
p ⇒ q, p is the antecedent and q is the consequent. Implication is often confusing to students
because the way it is used in English is quite complicated and subtle. For example, consider
the following sentences.

Propositional Logic 19

If Obama invented the Internet, then the inhabitants of Boston are all dragons.

Is it true?
What about the following?

If Obama was elected president, then the inhabitants Tokyo are all descendants
of Godzilla.

Logically, only the first is true, but most English speakers will say that if there is no
connection between the antecedent and consequent, then the implication is false.

Why is the first logically true? Because here is the truth table for implication.

p q p ⇒ q
T T T
T F F
F T T
F F T

Here are two ways of remembering this truth table. First, p ⇒ q is equivalent to ¬p∨ q.
Second, p ⇒ q is false only when p is T , but q is F . This is because you should think of
p ⇒ q as claiming that if p holds, so does q. That claim is true when p is F . The claim can
only be invalidated if p holds, but q does not.

As a final example of the difference between logical implication (whose meaning is given
by the above truth table) and implication as commonly used, consider a father telling his
child:

If you behave, I’ll get you ice cream.

The child rightly expects to get ice cream if she behaves, but also expects to not get ice
cream if she doesn’t: there is an implied threat here.

The point is that the English language is subtle and open for interpretation. In order to
avoid misunderstandings, mathematical fields, such as Computer Science, tend to use what
is often called “mathematical English,” a very constrained version of English, where the
meaning of all connectives is clear.

Above we said that p ⇒ q is equivalent to ¬p ∨ q. This is the first indication that we
can often reduce propositional expressions to simpler forms. If by simpler we mean less
connectives, then which of the above is simpler?

Can we express the equivalence in propositional logic? Yes, using equality of Booleans,
≡, as follows (p ⇒ q) ≡ (¬p ∨ q).

Here is the truth table for ≡.

p q p ≡ q
T T T
T F F
F T F
F F T

How would you simplify the following?

1. p ∧ ¬p

20 Reasoning About Programs

2. p ∨ ¬p

3. p ≡ p

Here is one way.

1. (p ∧ ¬p) ≡ false

2. (p ∨ ¬p) ≡ true

3. (p ≡ p) ≡ true

The final binary connective we will consider is ⊕, xor. There are two ways to think
about xor. First, note that xor is exclusive or, meaning that exactly one of its arguments is
true. Second, note that xor is just the Boolean version of not equal. Here is the truth table
for ⊕.

p q p⊕ q
T T F
T F T
F T T
F F F

To avoid using too many parentheses, from now on we will follow the convention: ¬
binds tightest, followed by {∧,∨}, followed by ⇒, followed by {⊕,≡}. Hence, instead of

((p ∨ (¬q)) ⇒ r)⊕ ((¬r) ⇒ (q ∧ (¬p)))

we can write
p ∨ ¬q ⇒ r ⊕ ¬r ⇒ q ∧ ¬p

We will also consider a ternary connective, i.e., a connective with three arguments. The
connective is ite, which stands for “if-then-else,” and means just that: if the first argument
holds, return the second (the then branch), else return the third (the else branch). Since
there are three arguments, there are eight rows in the truth table.

p q r ite(p, q, r)
T T T T
T T F T
T F T F
T F F F
F T T T
F T F F
F F T T
F F F F

Here are some very useful ways of characterizing propositional formulas. Start by con-
structing a truth table for the formula and look at the column of values obtained. We say
that the formula is:

� satisfiable if there is at least one T

Propositional Logic 21

� unsatisfiable if it is not satisfiable, i.e., all entries are F

� falsifiable if there is at least one F

� valid if it is not falsifiable, i.e., all entries are T

We have seen examples of all of the above. For example, p ∧ q is satisfiable, since the
assignment that makes p and q both T results in p ∧ q also being T . This example is also
falsifiable, as evidenced by the assignment that makes p F and q T . An example of an
unsatisfiable formula is p ∧ ¬p. If you construct the truth table for it, you will notice that
every assignment makes it F (so it is falsifiable too). Finally, an example of a valid formula
is p ∨ ¬p.

Notice that if a formula is valid, then it is also satisfiable. In addition, if a formula is
unsatisfiable, then it is also falsifiable.

Validity turns out to be really important. A valid formula, often also called a theorem,
corresponds to a correct logical argument, an argument that is true regardless of the values
of its atoms. For example p ⇒ p is valid. No matter what p is, p ⇒ p always holds.

2.1 P = NP

A natural question arises at this point: Is there an algorithm that given a propositional
logic formula returns “yes” if it is satisfiable and “no” otherwise?

Here is an algorithm: construct the truth table. If we have the truth table, we can easily
decide satisfiability, validity, unsatisfiability, and falsifiability.

The problem is that the algorithm is inefficient. The number of rows in the truth table
is 2n, where n is the number of atoms in our formula.

Can we do better? For example, recall that we had an inefficient recursive algorithm for
sum-n (the function that given a natural number n, returns

∑n
i=0 i). The function required

n additions, which is exponential in the number of bits needed to represent n (log n bits are
needed). However, with a little math, we found an algorithm that was efficient because it
only needed 3 arithmetic operations.

Is there an efficient algorithm for determining Boolean satisfiability? By efficient, we
mean an algorithm that in the worst case runs in polynomial time. Gödel asked this question
in a letter he wrote to von Neumann in 1956. No one knows the answer, although this is
one of the most studied questions in computer science. In fact, most of the people who
have thought about this problem believe that no polynomial time algorithm for Boolean
satisfiability exists.

2.2 The Power of Xor

Let us take a short detour, I’ll call “the power of xor.”
Suppose that you work for a secret government agency and you want to communicate

with your counterparts in Europe. You want the ability to send messages to each other
using the Internet, but you know that other spy agencies are going to be able to read the
messages as they travel from here to Europe.

How do you solve the problem?

22 Reasoning About Programs

Well, one way is to have a shared secret: a long sequence of F ’s and T ’s (0’s and 1’s if
you prefer), in say a code book that only you and your counterparts have. Now, all messages
are really just sequences of bits, which we can think of as sequences of F ’s and T ’s, so you
take your original message m and xor it, bit by bit, with your secret s. That gives rise to
coded message c, where c ≡ m⊕ s. Notice that here we are applying ≡ and ⊕ to sequences
of Boolean values, often called bit-vectors.

Anyone can read c, but they will have no idea what the original message was, since s
effectively scrambled it. In fact, with no knowledge of s, an eavesdropper can extract no
information about the contents of m from c, except for the length of the message, which
can be partially hidden by padding the message with extra bits.

But, how will your counterparts in Europe decode the message? Notice that some
propositional reasoning shows that m = c ⊕ s, so armed with your shared secret, they can
determine what the message is.

This is one of the most basic encryption methods. It provides extremely strong security
but is difficult to use because it requires sharing a secret. While sharing a key might be
feasible for government agencies, it is not feasible for you and all the companies you buy
things from on the internet.

The shared secret should be a random sequence of bits and once bits of the secret key
are used, they should never be used again. Why?

Exercise 2.1 Show that this scheme is secure. Here’s how. Show that for any coded mes-
sage c of length l, if an adversary only knows c (but not m and not s), then for any m (of
length l), there exists a secret s (of length l) such that c = m⊕ s.

Exercise 2.2 If s, the secret key, is not a random sequence, why is this a bad idea? For
example, what if s is all 0’s or all 1’s?

Exercise 2.3 If you keep reusing s, the secret key, why is this a bad idea?

2.3 Useful Equalities

Here are some simple equalities involving the constant true.

1. p ∨ true ≡ true

2. p ∧ true ≡ p

3. p ⇒ true ≡ true

4. true ⇒ p ≡ p

5. p ≡ true ≡ p

6. p⊕ true ≡ ¬p

Here are some simple equalities involving the constant false.

1. p ∨ false ≡ p

2. p ∧ false ≡ false

Propositional Logic 23

3. p ⇒ false ≡ ¬p

4. false ⇒ p ≡ true

5. p ≡ false ≡ ¬p

6. p⊕ false ≡ p

Why do we have separate entries for p ⇒ false and false ⇒ p, above, but not for both
p ∨ false and false ∨ p? Because ∨ is commutative. Here are some equalities involving
commutativity.

1. p ∨ q ≡ q ∨ p

2. p ∧ q ≡ q ∧ p

3. p ≡ q ≡ q ≡ p

4. p⊕ q ≡ q ⊕ p

What about ⇒. Is it commutative? Is p ⇒ q ≡ q ⇒ p valid? No. By the way, the
right-hand side of the previous equality is called the converse: it is obtained by swapping
the antecedent and consequent.

A related notion is the inverse. The inverse of p ⇒ q is ¬p ⇒ ¬q. Note that the inverse
and converse of an implication are equivalent.

Even though a conditional is not equivalent to its inverse, it is equivalent to its contra-
positive:

(p ⇒ q) ≡ (¬q ⇒ ¬p)
The contrapositive is obtained by negating the antecedent and consequent and then swap-
ping them.

While we’re discussing implication, a very useful equality involving implication is:

(p ⇒ q) ≡ (¬p ∨ q)

Also, we often want to replace ≡ by ⇒, which is possible due to the following equality:

(p ≡ q) ≡ [(p ⇒ q) ∧ (q ⇒ p)]

Here are more equalities.

1. ¬¬p ≡ p

2. ¬true ≡ false

3. ¬false ≡ true

4. p ∧ p ≡ p

5. p ∨ p ≡ p

6. p ⇒ p ≡ true

7. p ≡ p ≡ true

24 Reasoning About Programs

8. p⊕ p ≡ false

9. p ∧ ¬p ≡ false

10. p ∨ ¬p ≡ true

11. p ⇒ ¬p ≡ ¬p
12. ¬p ⇒ p ≡ p

13. p ≡ ¬p ≡ false

14. p⊕ ¬p ≡ true

Here’s one set of equalities you have probably already seen: DeMorgan’s Laws.

1. ¬(p ∧ q) ≡ ¬p ∨ ¬q
2. ¬(p ∨ q) ≡ ¬p ∧ ¬q
Here’s another property: associativity.

1. ((p ∨ q) ∨ r) ≡ (p ∨ (q ∨ r))

2. ((p ∧ q) ∧ r) ≡ (p ∧ (q ∧ r))

3. ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))

4. ((p⊕ q)⊕ r) ≡ (p⊕ (q ⊕ r))

We also have distributivity:

1. p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

2. p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

We also have transitivity:

1. [(p ⇒ q) ∧ (q ⇒ r)] ⇒ (p ⇒ r)

2. [(p ≡ q) ∧ (q ≡ r)] ⇒ (p ≡ r)

Last, but not least, we have absorption:

1. p ∧ (p ∨ q) ≡ p

2. p ∨ (p ∧ q) ≡ p

Let’s consider absorption more carefully. Here is a simple calculation:
Proof

p ∧ (p ∨ q)

≡ { Distribute ∧ over ∨ }
(p ∧ p) ∨ (p ∧ q)

≡ { (p ∧ p) ≡ p }
p ∨ (p ∧ q) �

The above proof shows that p ∧ (p ∨ q) ≡ p ∨ (p ∧ q), so if we show that p ∧ (p ∨ q) ≡ p,
we will have also shown that p ∨ (p ∧ q) ≡ p.

Propositional Logic 25

2.4 Proof Techniques

Let’s try to show that p ∧ (p ∨ q) ≡ p. We will do this using a proof technique called case
analysis.

Case analysis: If f is a formula and p is an atom, then f is valid iff both f |((p true))

and f |((p false)) are valid. By f |((p x)) we mean, substitute x for p in f .
Proof

p ∧ (p ∨ q) ≡ p

≡ { Case analysis }
true ∧ (true ∨ q) ≡ true and false ∧ (false ∨ q) ≡ false

≡ { Basic Boolean equalities }
true ≡ true and false ≡ false

≡ { Basic Boolean equalities }
true �

Another useful proof technique is instantiation: If f is a valid formula, then so is f |σ,
where σ is a substitution, a list of the form:

((atom1 formula1) · · · (atomn formulan)),

where the atoms are “target atoms” and the formulas are their images. The application of
this substitution to a formula uniformly replaces every free occurrence of a target atom by
its image.

Here is an example of applying a substitution. (a ∨ ¬(a ∧ b))|((a (p∨q))(b a)) = ((p ∨ q) ∨
¬((p ∨ q) ∧ a)).

Here is an application of instantiation. a∨¬a is valid, so therefore, so is (a∨¬a)|((a (p∨(q∧r)))) =
(p ∨ (q ∧ r)) ∨ ¬(p ∨ (q ∧ r)).

2.5 Normal Forms and Complete Boolean Bases

We have seen several propositional connectives, but do we have any assurance that the
connectives are complete? By complete we mean that the propositional connectives we have
can be used to represent any Boolean function.

How do we prove completeness?
Consider some arbitrary Boolean function f over the atoms x1, . . . , xn. The domain of

f has 2n elements, so we can represent the function using a truth table with 2n rows. Now
the question becomes: can we represent this truth table using the connectives we already
introduced?

Here is the idea of how we can do that. Take the disjunction of all the assignments that
make f true. The assignments that make f true are just the rows in the truth table for which
f is T . Each such assignment can be represented by a conjunctive clause, a conjunction of
literals, atoms or their negations. So, we can represent each of these assignments. Now to
represent the function, we just take the disjunction of all the conjunctive clauses.

Consider what happens if we try to represent a⊕b in this way. There are two assignments
that make a ⊕ b true and they can be represented by the conjunctive clauses a ∧ ¬b and
¬a ∧ b, so a ⊕ b can be represented as the disjunction of these two conjunctive clauses:
(a ∧ ¬b) ∨ (¬a ∧ b).

26 Reasoning About Programs

Notice that we only need ¬,∨, and ∧ to represent any Boolean function!
The formula we created above was a disjunction of conjunctive clauses. Formulas of this

type are said to be in disjunctive normal form (DNF). If each conjunctive clause includes
all the atoms in the formula, then we say that the formula is in full disjunctive normal
form. Another type of normal form is conjunctive normal form (CNF): each formula is
a conjunction of disjunctive clauses, where a disjunctive clause is a disjunction of literals.
Disjunctive clauses are also just called clauses. If each clause includes all the atoms in the
formula, then we say that the formula is in full conjunctive normal form.

Can you come up with a way of representing an arbitrary truth table in full CNF? (Hint:
Consider what we did for DNF.)

Any formula can be put in DNF or CNF. In fact, the input format for modern SAT
solvers is CNF, so if you want to check the satisfiability of a Boolean formula using a SAT
solver, you have to transform the formula so that it is in CNF.

Exercise 2.4 You are given a Boolean formula and your job is to put it in CNF and DNF.
How efficiently can this be done?

Hint: Consider formulas of the form

(x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xn ∧ yn)

(x1 ∨ y1) ∧ (x2 ∨ y2) ∧ · · · ∧ (xn ∨ yn)

Back to completeness. We saw that these three connective are already complete: ¬,∨,∧.
Can we do better? Can we get rid of some of them?

We can do better because ∨ can be represented using only ∧,¬. Similarly ∧ can be
represented using only ∨,¬. How?

Exercise 2.5 Can we do better yet? No. ¬ is not complete; neither is ∧; neither is ∨.
Prove it.

Next, think about this claim: you can represent all the Boolean connectives using just ite
(and the constants false, true). If we can represent ¬ and ∨, then as the previous discussion
shows, we’re done.

¬p ≡ ite(p, false, true)

p ∨ q ≡ ite(p, true, q)

Exercise 2.6 Represent the rest of the connectives using ite.

Exercise 2.7 There are 16 binary Boolean connectives. Are any of them complete? If
so, exhibit such a connective and prove that it is complete. If not, prove that none of the
connectives is complete.

2.6 Decision Procedures

When a formula is not valid, it is falsifiable, so there exists an assignment that makes it false.
Such an assignment is often called a counterexample and can be very useful for debugging
purposes. Since ACL2s is a programming language, we can use it to write our own decision
procedure that provides counterexamples to validity.

Propositional Logic 27

Exercise 2.8 Write a decision procedure for validity in ACL2s.

While we are on the topic of decision procedures, it is worth pointing that we character-
ized formulas as satisfiable, unsatisfiable, valid, or falsifiable. Let’s say we have a decision
procedure for one of these four characterizations. Then, we can, rather trivially, get a
decision procedure for any of the other characterizations.

Why?
Well, consider the following.

Proof
Unsat f

≡ { By the definition of sat, unsat }
not (Sat f)

≡ { By definition of Sat, Valid }
Valid ¬f

≡ { By definition of valid, falsifiable }
not (Falsifiable ¬f) �

How do we use these equalities to obtain a decision procedure for either of unsat, sat,
valid, falsifiable, given a decision procedure for the other?

Well, let’s consider an example. Say we want a decision procedure for validity given a
decision procedure for satisfiability.

Valid f

≡ { not (Sat f) ≡ Valid¬f , by above }
not (Sat ¬f)

What justifies this step? Propositional reasoning and instantiation.
Let p denote “(Sat f)” and q denote “(Valid ¬f).” The above equations tell us ¬p ≡ q,

so p ≡ ¬q.
If more explanation is required, note that (¬p ≡ q) ≡ (p ≡ ¬q) is valid. That is, you can

transfer the negation of one argument of an equality to the other.
Make sure you can do this for all 12 combinations of starting with a decision proce-

dure for sat, unsat, valid, falsifiable, and finding decision procedures for the other three
characterizations.

There are two interesting things to notice here.
First, we took advantage of the following equality:

(¬p ≡ q) ≡ (p ≡ ¬q)

There are lots of equalities like this that you should know about, so study the provided
list.

Second, we saw that it was useful to extract the propositional skeleton from an argument.
We’ll look at examples of doing that. Initially this will involve word problems, but later it
will involve reasoning about programs.

28 Reasoning About Programs

2.7 Propositional Logic in ACL2s

This class is about logic from a computational point of view and our vehicle for exploring
computation is ACL2s. ACL2s has ite: it is just if!

Remember that ACL2s is in the business of proving theorems. Since propositional logic
is used everywhere, it would be great if we could use ACL2s to reason about propositional
logic. In fact, we can.

Consider trying to prove that a propositional formula is valid. We would do that now,
by constructing a truth table. We can also just ask ACL2s. For example, to check whether
the following is valid

(p ⇒ q) ≡ (¬p ∨ q)

We can ask ACL2s the following query

(thm (implies (and (booleanp p) (booleanp q))

(iff (implies p q) (or (not p) q))))

Try it in Beginner mode.
In fact, if a propositional formula is valid (that is, it is a theorem) then ACL2s will

definitely prove it. We say that ACL2s is a decision procedure for propositional validity. A
decision procedure for propositional validity is a program that given a formula can decide
whether or not it is valid. We saw that ACL2s indicates that it has determined that a
formula is valid with “Q.E.D.” 1

What if you give ACL2s a formula that is not valid? Try it with an example, say:

(p⊕ q) ≡ (p ∨ q)

We can ask ACL2s the following query

(thm (implies (and (booleanp p) (booleanp q))

(iff (xor p q) (or p q))))

As you can see, ACL2s also can provide counterexamples to false conjectures.

2.8 Word Problems

Next, we consider how to formalize word problems using propositional logic.
Consider formalizing and analyzing the following.

Tom likes Jane if and only if Jane likes Tom. Jane likes Bill. Therefore, Tom
does not like Jane.

Here’s the kind of answer I expect you to give.

Let p denote “Tom likes Jane”; let q denote “Jane likes Tom”; let r denote “Jane
likes Bill.”

The first sentence can then be formalized as p ≡ q.

We denote the second sentence by r.

1Q.E.D. is abbreviation for “quod erat demonstrandum,” Latin for “that which was to be demonstrated.”

Propositional Logic 29

The third sentence contains the claim we are to analyze, which can be formalized
as ((p ≡ q) ∧ r) ⇒ ¬p.
This is not a valid claim. A truth table shows that the claim is violated by the
assignment that makes p, q, and r true. This makes sense because r (that Jane
likes Bill) does not rule out q (that “Jane likes Tom”), but q requires p (that
“Tom likes Jane”).

Consider another example.

A grade will be given if and only if the test is taken. The test has been taken.
Was a grade given?

Anything of the form “a iff b” is formalized as a ≡ b. The problem now becomes easy to
analyze.

John is going to the party if Mary goes. Mary is not going. Therefore, John
isn’t going either.

How do we formalize “a if b”? Simple: b ⇒ a. Finish the analysis.

John is going to the party only if Mary goes. Mary is not going. Therefore, John
isn’t going either.

How do we formalize “only if”? A simple way to remember this is that “if” is one
direction of “if and only if” and “only if” is the other direction. Thus, “a only if b” is
formalized as a ⇒ b.

Try this one.

John is going to the party only if Mary goes. Mary is going. Therefore, John is
going too.

One more.

Paul is not going to sleep unless he finishes the carrot hunt on Final Fantasy
XII. Paul went to sleep. Therefore, he finished the carrot hunt on Final Fantasy
XII.

How do we formalize “a unless b”? It is ¬b ⇒ a. Why? Because “a unless b” says that
a has to be true, except when (unless) b is true, so when b is true, a can be anything. The
only assignment that violates “a unless b” is when a is false and b is false. So, notice that
“a unless b” is equivalent to “a or b”.

One more example of unless.

You will not get into NEU unless you apply.

is the same as

You will not get into NEU if you do not apply.

which is the same as

You will not get into NEU or you will apply.

So, the hard part here is formalizing the problem. After that, even ACL2s can figure
out if the argument is valid.

30 Reasoning About Programs

2.9 The Declarative Approach to Design

Most of the design paradigms you have seen so far require you to describe how to solve
problems algorithmically. This is true for functional, applicative, and object-oriented pro-
gramming paradigms. A rather radically different approach to design is to use the declarative
paradigm. The idea is to specify what we want, not how to achieve it. A satisfiability solver
is then used to find a solution to the constraints.

2.9.1 Avionics Example

Let us consider an example from the avionics domain.
We have a set of cabinets C = {C1, C2, . . . , C20}. Cabinets are physical locations on an

airplane that provide network access, battery power, memory, CPUs, and other resources.
We also have a set of avionics applications A = {A1, A2, . . . , A500}. The avionics appli-

cations are software programs and include applications such as navigation, control, collision
detection, and collision avoidance.

Our job is to map each application to one cabinet subject to a large number of constraints.
Instead of us figuring out how to achieve this mapping, by using the declarative approach

we will instead just specify the constraints we have on the mapping and we will let the
declarative system we are using figure out a solution for us. This allows us to operate at
a much higher level of abstraction than is the case with functional, imperative, or object-
oriented approaches.

To make the idea concrete, we consider one simple example of a constraint: applications
A1, A2, and A3 have to be separated. What this means is that no pair of them can reside on
the same cabinet. Here is how we might express this constraint in the declarative language
CoBaSA. Assume that we have defined A, the array of 500 applications and C, the array of
20 cabinets.

Map AC A C

For_all cab in C {AC(1,cab) implies ((not AC(2,cab)) and (not AC(3,cab)))}

For_all cab in C {AC(2,cab) implies (not AC(3,cab))}

The first line tells us that AC is a map, a function from A to C. When we define a
map, we get access to indicator variables. Such variables are Boolean variables of the
form AC(app,cab), where AC(app,cab) = true iff AC(app) = cab, i.e., map AC applied to
application app returns cab.

2.9.2 Solving Declarative Constraints

In this section, we will get a glimse into the process by which the three lines of CoBaSA
constraints above get turned into a formula in propositional logic that is then given to a
SAT solver.

We start by writing the constraints above using standard mathematical notation, starting
with the second constraint.

〈∀c ∈ C :: AC c
1 =⇒ ¬AC c

2 ∧ ¬AC c
3〉

Propositional Logic 31

The ∀ symbol is a universal quantifier. It states that for all cabinets (c ∈ C) if application
A1 gets mapped to the cabinet (the indicator variable AC c

1) then neither application A2

nor application A3 get mapped to the same cabinet. We can actually rewrite this using
propositional logic as follows:

∧

c∈C

AC c
1 =⇒ ¬AC c

2 ∧ ¬AC c
3

So, universal quantification can be thought of as conjuction. Now, if we expand this out,
we wind up with the following:

(AC 1
1 =⇒ ¬AC 1

2 ∧ ¬AC 1
3) ∧

(AC 2
1 =⇒ ¬AC 2

2 ∧ ¬AC 2
3) ∧

. . .

(AC 20
1 =⇒ ¬AC 20

2 ∧ ¬AC 20
3)

So, we are almost at the point where we can give this to a SAT solver. One issue, however, is
that most SAT solvers require their input to be in CNF (Conjunctive Normal Form). What
we have is a conjunction, but the conjuncts are not clauses. Here is how to turn them into
clauses. We show how to do this for the first conjunct only, since the rest follow the same
pattern. The first conjunct above gets turned into the following two clauses.

¬AC 1
1 ∨ ¬AC 1

2

¬AC 1
1 ∨ ¬AC 1

3

Notice that these two clauses are semantically equivalent to the conjunct they correspond
to.

There is one more issue to deal with before we can use a SAT solver: SAT solvers tend to
require DIMACS file format. In the DIMACS format, variables are represented by positive
integers, negated variables by negative integers, and each clause is a list of integers that
ends with a 0 and a newline. So, the first thing to do is to come up with a mapping from
indicator variables into the positive integers so that no two indicator variables get mapped
to the same number. Here is one way of doing that.

var(AC c
a) = 20(a− 1) + c

With this mapping, the translation of the 2nd CoBaSA constraint to DIMACS format gives
us the following 40 disjuncts:

-1 -21 0

-1 -41 0

-2 -22 0

-2 -42 0

...

-20 -40 0

-20 -60 0

32 Reasoning About Programs

The third CoBaSA constraint gets translated in a similar way. What about the first
constraint?

Well, here is one way of thinking of the map constraint using logic.

〈∀a ∈ A :: 〈∃c ∈ C :: AC c
a〉〉

This says that for every application a, there exists some cabinet c (this is the meaning of
the existential quantifier ∃), such that the indicator variable AC c

a holds (is true). Notice
that we could have said that there exists a unique cabinet c such that the indicator variable
AC c

a holds. This would have been a more faithful translation, but it turns out that if more
than one indicator variable is true, then all that means is that we have a choice as to where
to place a, so we prefer to have fewer constraints and not insist on uniqueness. Now, just
as universal quantification can be thought of as conjunction, existential quantification can
be thought of a disjunction, so we can rewrite the above constraint using only propositional
connectives as: ∧

a∈A

∨

c∈C

AC c
a

We proceed as previously by expanding this out with the goal of generating a CNF formula.

AC 1
1 ∨ AC 2

1 ∨ AC 3
1 · · · ∨ AC 20

1

AC 1
2 ∨ AC 2

2 ∨ AC 3
2 · · · ∨ AC 20

2

...

AC 1
500 ∨ AC 2

500 ∨ AC 3
500 · · · ∨ AC 20

500

Finally, we apply var to transform the indicator variables into numbers in order to obtain
the DIMACS version of the above formula.

1 2 3 ... 20 0

21 22 23 ... 40 0

...

9980 9981 9982 ... 10000 0

