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Introduction

These lecture notes were developed for Logic and Computation, a freshman-level class taught
at the College of Computer and Information Science of Northeastern University. Starting
in Spring 2008, this is a class that all students in the college are required to take.

The goals of the Logic and Computation course are to provide an introduction to formal
logic and its deep connections to computing. Logic is presented from a computational
perspective using the ACL2 Sedan theorem proving system. The goal of the course is
to introduce fundamental, foundational methods for modeling, designing, specifying and
reasoning about computation. The topics covered include propositional logic, recursion,
contracts, testing, induction, equational reasoning, termination analysis, term rewriting, and
various proof techniques. We show how to use logic to formalize the syntax and semantics
of the core ACL2s language, a simple LISP-based language with contracts. We then use
the ACL2s language to formally reason about programs, to model systems at various levels
of abstraction, to design and specify interfaces between systems and to reason about such
composed systems. We also examine decision procedures for fragments of first-order logic
and how such decision procedures can be used to analyze models of systems.

The students taking the Logic and Computation class have already taken a program-
ming class in the previous semester, in Racket. The course starts by reviewing some basic
programming concepts. The review is useful because at the freshman level students benefit
from seeing multiple presentations of key concepts; this helps them to internalize these con-
cepts. For example, in past semesters I have asked students to write very simple programs
(such as a program to append two lists together) during the first week of classes and a
surprisingly large number of students produce incorrect code.

During the programming review, we introduce the ACL2s language. This is the language
we use throughout the semester and it is similar to Racket. The syntax and semantics of the
core ACL2s language are presented in a mathematical way. We provide enough information
so that students can determine what sequence of glyphs form a well-formed expression
and how to formally evaluate well-formed expressions potentially containing user-defined
functions with constants as arguments (this is always in a first-order setting). This is a
pretty big jump in rigor for students and is advanced material for freshmen students, but
they already have great intuitions about evaluation from their previous programming class.
This intuition helps them understand the rigorous presentation of the syntax and semantics,
which in turns helps strengthen their programming abilities.

The lecture notes are sparse. It would be great to add more exercises, but I have not done
that yet. Over the course of many years, we have amassed a large collection of homework
problems, so students see lots of exercises, and working through these exercises is a great
way for them to absorb the material, but the exercises are not in the notes. You can think
of the lecture notes as condensed notes for the course that are appropriate for someone who
knows the material as a study guide. The notes can also be used as a starting point by
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students, who should mark them up with clarifications as needed when they attend lectures.
I advise students to read the lecture notes before class. This way, during class they can focus
on the lecture instead of taking notes and they are better prepared to ask for clarifications.

When I started teaching the class, I used the ACL2 book, Computer-Aided Reasoning, An
Approach by Kaufmann, Manolios and Moore. However, over the years I became convinced
that using an untyped first-order logic was not the optimal way of introducing logic and
computation to students because they come in with a typed view of the world. That’s not to
say they have seen type theory; they have not. But, they are surprised when a programming
language allows them to subtract a string from a rational number. Therefore, with the help
of my Ph.D. student Harsh Chamarthi, I have focused on adding type-like capabilities to
ACL2s. Most notably, we added a new data definition framework to ACL2s that supports
enumeration, union, product, record, map, (mutually) recursive and custom types, as well
as limited forms of parametric polymorphism. We also introduced the defunc and definec

macros, which allow us to formally specify input and output contracts for functions. These
contracts are very general, e.g., we can specify that / is given two rationals as input, and
that the second rational is not 0, we can specify that zip-lists is given two lists of the
same length as input and returns a list of the same length as output and so on. Contracts
are also checked statically, so ACL2s will not accept a function definition unless it can prove
that the function satisfies its contracts and that for every legal input and every possible
computation, it is not possible during the evaluation of the function being defined to be in a
state where some other function is poised to be evaluated on a value that violates its input
contract. I have found that a significant fraction of erroneous programs written by students
have contract violations in them, and one of the key things I emphasize is that when writing
code, one needs to think carefully about the contracts of the functions used and why the
arguments to every function call satisfy the function’s contract. Contracts are the first step
towards learning how to specify interfaces between systems. With the move to contracts,
the ACL2 book became less and less appropriate, which led me to write these notes.

I have distributed these notes to the students in Logic and Computation for several
years and they have found lots of typos and have made many suggestions for improvement.
Thanks and keep the comments coming!



Part I

Programming
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A Simple Functional Programming Language

In this chapter we introduce a simple functional programming language that forms the core
of ACL2s. The language is a dialect of the Lisp programming language and is based on
ACL2. In order to reason about programs, we first have to understand the syntax and
semantics of the language we are using. The syntax of the language tells us what sequence
of glyphs constitute well-formed expressions. The semantics of the language tells us what
well-formed expressions (just expressions from now on) mean, i.e., how to evaluate them.
Our focus is on reasoning about programs, so the programming language we are going to
use is designed to be simple, minimal, expressive, and easy to reason about.

What makes ACL2s particularly easy to reason about is the fact that it is a functional
programming language. What this means is that every built-in function, and in fact any
ACL2s function a user can define, satisfies the rule of Leibniz. 1

If x1 = y1 and x2 = y2 and · · · and xn = yn, then (f x1 x2 · · ·xn) = (f y1 y2 · · · yn)

As the above equation shows, if f is an ACL2s function of n arguments, and we want to
apply it to x1, x2, . . . , xn, we write (f x1 x2 · · ·xn). 2 Almost no other language satisfies
the very strict rule of Leibniz, e.g., in Java you can define a function foo of one argument
that on input 0 can return 0, or 1, or any integer because it returns the number of times
it was called. This is true for Racket, Scheme, LISP, C, C++, C#, OCaml, etc. The rule
of Leibniz, as we will see later, is what allows us to reason about ACL2s in a way that
mimics algebraic reasoning. To reason about other languages, one typically generates an
intermediate representation that is functional, as we will see later.

You interact with ACL2s via a Read-Eval-Print-Loop (REPL). For example, ACL2s
presents you with a prompt indicating that it is ready to accept input.

ACL2S !>

You can now type in an expression, say

ACL2S !>12

ACL2s reads and evaluates the expression and prints the result

12

It then presents the prompt again, indicating that it is ready for another REPL interaction

ACL2S !>

We recommend that as you read these notes, you also have ACL2s installed and follow along
in the “ACL2S” mode. The prompt indicates that ACL2s is in the “ACL2S” mode.

1The term functional programming language has many different definitions, e.g., it is often used to refer
to languages in which functions are treated as first-class objects. ACL2s is not functional in this sense.

2This notation is used by Lisp-based languages, such as ACL2s.



4 Reasoning About Programs

The ACL2s programming language allows us to design programs that manipulate objects
from the ACL2s universe. The set of all objects in the universe will be denoted by All. All

includes:

� Rationals: For example, 11,−7, 3/2,−14/15.

� Symbols: For example, x, var, lst, t, nil.

� Booleans: There are two Booleans, t, denoting true and nil, denoting false.

� Characters: For example, #\a, #\B, #\Space.

� Strings: For example, "Hello world".

� Conses: For example, (1), (1 2 3), (cons 1 2), (1 (1 2) 3).

The Rationals, Symbols, Characters, Strings and Conses are disjoint. The Booleans nil and
t are Symbols. Conses are Lists, but there is exactly one list, the empty list, which is not
a cons. We will use () to denote the empty list, but this is really an abbreviation for the
symbol nil.

The ACL2s language includes a basic core of built-in functions, which are used to define
new functions.

It turns out that expressions are just a subset of the ACL2s universe. Every expression is
an object in the ACL2s universe, but not conversely. As we introduce the syntax of ACL2s,
we will both identify what constitutes an expression and what these expressions mean as
follows. If expr is an expression, then

Jexpr K

will denote the semantics of expr , or what expr evaluates to when submitted to ACL2s
at the REPL.

We will introduce the ACL2s programming language by first introducing the syntax and
semantics of constants, then Booleans, then numbers, and then conses and lists.

2.1 Constants

All constants are expressions. The ACL2s Boolean constant denoting true is the symbol t
and the constant denoting false is the symbol nil. These two constants are different and
they evaluate to themselves.

JtK = t

JnilK = nil

nil 6= t

The numeric constants include the natural numbers:

0, 1, 2, . . .

and the negative integers:
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−1,−2,−3, . . .

All integers evaluate to themselves, e.g.,

J3K = 3

J−12K = −12

The numeric constants also include the rationals:

1/2, −1/2, 1/3, −1/3, 3/2, −3/2, 2/3, −2/3, . . .

We will describe the evaluation of rationals in Section 2.3.

2.2 Booleans

There are two built-in functions, if and equal.
When we introduce functions, we specify their signature. The signature of if is:

if : All× All× All → All

The signature of if tells us that if takes three arguments, where all three arguments
are anything at all. It returns anything. So, the signature specifies not only the arity of the
function (how many arguments it takes) but also its input and output contracts.

Examples of if expressions include the following.

(if t nil t)

(if 2 3 4)

All function applications in ACL2s are written in prefix form as shown above. For
example, instead of 3 + 4, in ACL2s we write (+ 3 4). The if expressions above are
elements of the ACL2s universe, e.g., the first if expression is a list consisting of the
symbols if, t, nil, and t, in that order.

Not every list starting with the symbol if is an expression, e.g., the following is not an
expression.

(if t nil)

The list above does not satisfy the signature of if, which tells us that the function has
an arity of three. In general, a list is an expression if it satisfies the signature of a built-in
or previously defined function.

The semantics of (if test then else) is as follows.

J(if test then else)K = JthenK, when JtestK 6= nil

J(if test then else)K = JelseK, when JtestK = nil

For all ACL2s functions we consider, we specify the semantics of the functions only in the
case that the signature of the function is satisfied, i.e., only for expressions. For example,
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as we have seen (if t nil) is not an expression. If you try to evaluate it you will get an
error message indicating that if requires three arguments.

We will almost always follow the convention that the first argument to if is a Boolean.
Later on, we will see examples of how the ability to use non-Booleans in the test of an if,
often referred to as generalized Booleans, can be useful.

Our first function, if, is an important and special function. In contrast to every other
function, if is evaluated in a lazy way by ACL2s. Here is how evaluation works. To evaluate

J(if test then else)K

ACL2s performs the following steps.

1. First, ACL2s evaluates test , i.e., it computes JtestK.

2. If JtestK 6= nil, then ACL2s returns JthenK.

3. Otherwise, it returns JelseK.

Notice that test is always evaluated, but only one of then or else is evaluated. In contrast,
for all other functions we define, ACL2s will evaluate them in a strict way by evaluating all
of the arguments to the function and then applying the function to the evaluated results.

Examples of the evaluation of if expressions include the following:

J(if t nil t)K = nil

J(if nil 3 4)K = 4

J(if 2 3 4)K = 3

Here is a more complex if expression.

(if (if t nil t) 1 2)

This may be confusing because it seems that the test of the if is a List, not a Boolean.
However, notice that to evaluate an if, we evaluate the test first, i.e.:

J(if t nil t)K = nil

Therefore,
J(if (if t nil t) 1 2)K = J2K = 2

The next function we consider is equal.

equal : All× All → Boolean

J(equal x y)K is t if JxK = JyK and nil otherwise.
Notice that equal always evaluates to t or nil.
Here are some examples.

J(equal 3 nil)K = nil

J(equal 0 0)K = t

J(equal (if t nil t) nil)K = t
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That’s it for the built-in Booleans constants and functions.
Let us now define some utility functions. These functions are already predefined in

ACL2s, but if you want to follow along and experiment, define them using a different
function name.

We start with booleanp, whose signature is as follows.

All → Boolean

The name is the concatenation of the word “boolean” with the symbol “p.” The “p”
indicates that the function is a predicate, a function that returns t or nil. We will use this
naming convention in ACL2s (most of the time). Other Lisp dialects indicate predicates
using other symbols, e.g., Racket and Scheme use “?” (pronounced “huh”) instead of “p.”

Here is one way to define functions with contracts in ACL2s. The check= forms allow
us to write down what we expect our function will return on various legal inputs.

(definec booleanp (x ...) ...

(if (equal x t)

t

(equal x nil)))

(check= (booleanp t) t)

(check= (booleanp nil) t)

(check= (booleanp 12) nil)

The contracts were deliberately elided. We will add them shortly, but first we discuss
how to evaluate expressions involving booleanp.

How do we evaluate (booleanp 3)?
J(booleanp 3)K

= { Semantics of booleanp }

J(if (equal 3 t) t (equal 3 nil))K

= { Semantics of equal, J(equal 3 t)K= nil, Semantics of if }

J(equal 3 nil)K

= { Semantics of equal, J(equal 3 nil)K= nil }

nil

Above we have a sequence of expressions each of which is equivalent to the next expression
in the sequence for the reason given in the hint enclosed in curly braces. For example the
first equality holds because we expanded the definition of booleanp, replacing the formal
parameter x with the actual argument 3.

In ACL2s, functions have input and output contracts. Contracts allow us to place
constraints on arguments to functions and to make claims about the outputs generated
by functions. Contracts are checked by ACL2s. A simple kind of contract that we will
always use, is to specify the types of inputs and outputs. ACL2s has a powerful type system
provided by defdata, so just the use of types gives us significant expressive power, but
contracts in ACL2s are much more powerful. Types and contacts will be explained in this
chapter.

What is the input type for booleanp?
It is all because there are no constraints on the input to the function. All recognizers

will have an input type of all. A recognizer is a function that given any element of the
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ACL2s universe recognizes whether it belongs to a particular subset of the universe. In the
case of booleanp, the subset being recognized is the set of Booleans, i.e., {t, nil}.

What about the output contract? Since booleanp is a recognizer it returns a Boolean!
So, all together we have:

(definec booleanp (x :all) :boolean

(if (equal x t)

t

(equal x nil)))

In addition to definec, ACL2s provides defunc, a lower-level utility for defining func-
tions with contracts. In fact, definec is defined in terms of defunc. Here is how we could
have defined booleanp using defunc.

(defunc booleanp (x)

:input-contract t

:output-contract (booleanp (booleanp x))

(if (equal x t)

t

(equal x nil)))

What does the contract mean? Well, let us consider the general case. Say that function
f with parameters x1, . . . , xn has the input contract ic and the output contract oc, then
what the contract means is that for any assignment of values from the ACL2s universe to
the variables x1, . . . , xn, the following formula is always true.

ic implies oc

Hence, the contract for booleanp means that for any element of the ACL2s universe, x,

t implies (booleanp (booleanp x))

If we wanted to make the universal quantification and the implication explicit, we would
write the following, where the domain of x is implicitly understood to be All.

〈∀x :: t ⇒ (booleanp (booleanp x))〉

Notice that by the relationship between ⇒ (implication) and if, the above is equivalent
to

〈∀x :: (if t (booleanp (booleanp x)) t)〉

By the semantics of if, we can further simplify this to

〈∀x :: (booleanp (booleanp x))〉

So, for any ACL2s element x, booleanp returns a boolean. Notice that an equivalent
way to write the input contract for the defunc version of booleanp is the following

:input-contract (allp x)

because (allp x) is always t, so these two contracts are equivalent. Notice that in
defunc contracts, we use recognizers (e.g., allp and booleanp), but in definec, we use the
corresponding type names (e.g., all and boolean).
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Let us continue with more basic definitions. To simplify code, ACL2s allows one to write
:bool instead of :boolean in definec forms and boolp instead of booleanp.

Here is one way to define the other Boolean functions. This is not how they are really
defined, as we will shortly see, but it is worth assuming, for now, that the functions are
defined as shown below.

and : Boolean× Boolean → Boolean

(definec and (a b :bool) :bool

(if a b nil))

implies : Boolean× Boolean → Boolean

(definec implies (a b :bool) :bool

(if a b t))

or : Boolean× Boolean → Boolean

(definec or (a b :bool) :bool

(if a t b))

How do we evaluate expressions involving the above functions? Simple:
J(or t nil)K

= { Definition of or }

J(if t t nil)K

= { Semantics of if }

If JtK = nil then JnilK else JtK

= { Constants evaluate to themselves }

If t = nil then nil else t

= { t is not nil }

t

Exercise 2.1 Define: not, iff, xor, and other Boolean functions.

not : Boolean → Boolean

(definec not (a :bool) :bool

(if a nil t))

iff : Boolean× Boolean → Boolean

(definec iff (a b :bool) :bool

(if a b (not b)))

xor : Boolean× Boolean → Boolean
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(definec xor (a b :bool) :bool

(if a (not b) b))

2.3 Numbers

We have the following built-in recognizers:

integerp : All → Boolean

rationalp : All → Boolean

Here is what they mean.
J(integerp x)K is t iff JxK is an integer.
J(rationalp x)K is t iff JxK is a rational.
Note that integers are rationals. This is just a statement of mathematical fact.
Notice also that ACL2s includes the real rationals and integers, not approximations or

bounded numbers, as you might find in most other languages, including C and Java. ACL2s
also includes other types of numbers, but for our purposes, we will assume that all numbers
are rationals.

We also have the following functions.

binary-+ : Rational× Rational → Rational

binary-* : Rational× Rational → Rational

< : Rational× Rational → Boolean

unary-- : Rational → Rational

unary-/ : Rational → Rational

Wait, what about (unary-/ 0)? The contract really is:

unary-/ : Rational \ {0} → Rational

How do we express this kind of thing? Well, we have a type, non-0-rational corresponding
to non-zero rationals. Here is how the recognizer is defined.

(definec non-0-rational (x :all) :boolean

(and (rationalp x)

(not (equal x 0))))

Now we can express the contracts using definec.

(definec unary-/ (a :non-0-rational) :rational

...)

The semantics of the above functions should be clear (from elementary school). Here are
some examples.

J(binary-+ 3/2 17/6)K = 13/3

J(binary-* 3/2 17/6)K = 17/4
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J(< 3/2 17/6)K = t

J(unary-- -2/8)K = 1/4

J(unary-/ -2/8)K = -4

Exercise 2.2 Define subtraction on rationals - and division on rationals /. Note that the
second argument to / cannot be 0.

Let’s define some more functions, starting with a recognizer for positive integers.

posp : All → Boolean

(definec posp (a :all) :bool

(if (integerp a)

(< 0 a)

nil))

What if we tried to define posp as follows?

(definec posp (a :all) :bool

(and (integerp a)

(< 0 a)))

Well, notice that the contract for < is that we give it two rationals. How do we know
that a is rational? What we would like to do is to test that a is an integer first, before
testing that (< 0 a), but the only way to do that is to use if. This is another reason why
if is special. When checking the contracts of the then branch of an if, we can assume
that the test is true; when checking the contracts of an else branch, we can assume that
the test is false. No other ACL2s function gives us this capability. If we want to collect
together assumptions in order to show that contracts are satisfied, we have to use if.

It turns out to be really useful if Boolean functions such as and and or are just abbrevi-
ations for if. This is actually the case. These Boolean “functions” are really macros that
get expanded into if expressions. There is a lot to say about macros, but for our purposes,
all we need to know is that macros give us abbreviation power. They also allow and and or

to accept an arbitrary number of arguments. For example,

1. (and) abbreviates t

2. (and p) abbreviates p

3. (and p q) abbreviates (if p q nil)

4. (and p q r) abbreviates (if p (if q r nil) nil)

5. (or) abbreviates nil

6. (or p) abbreviates p

7. (or p q) abbreviates (if p p q)
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This makes writing contracts simpler. We also have macros that allow us to use => and !

as abberviations for implies and not, respectively.
Here is an example. Suppose we want to define a function that given an integer ≥ −5

checks to see if it is > 5.
Here is how one might define the function.

(defunc >5 (x)

:input-contract (and (< -6 x) (integerp x))

:output-contract (booleanp (>5 x))

(< 5 x))

ACL2s does not accept the definition. What’s the problem? Well, ACL2s checks the
contracts for the expressions in the input and output contracts of a function definition! This
is called input contract checking and output contract checking.

What’s the contract for <? That it is given rationals, but we don’t know that x is a
rational!

We have to write our input contracts so that they accept anything as input.
Here’s a second attempt.

(defunc >5 (x)

:input-contract (and (integerp x) (< -6 x))

:output-contract (booleanp (>5 x))

(< 5 x))

This works, in part because and is really an abbreviation for if.
When checking output contracts, we get to assume that the input contract holds. In

the above definition, that means that we get to assume that x is an integer that is > −6.
This assumption allows contract checking to pass on (> 5). Contract checking also passes
on booleanp, as it has an input contract of t.

We now reveal some new definec capabilities. The above definition of >5 using defunc

can also be written using definec in any of the following equivalent ways.

(definec >5 (x :all) :all

:input-contract (and (integerp x) (< -6 x))

:output-contract (booleanp (>5 x))

(< 5 x))

(definec >5 (x :all) :all

:input-contract (and (integerp x) (< -6 x))

:output-contract :bool

(< 5 x))

(definec >5 (x :all) :bool

:input-contract (and (integerp x) (< -6 x))

(< 5 x))

(definec >5 (x :int) :bool

:input-contract (< -6 x)

(< 5 x))

The last example above highlights why a good style that we will use throughout this
book is to always use the strongest type in the keyword types appearing in a definec, e.g.,
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(x :int) instead of (x :all), and :bool instead of :all. When definec processes input
contracts, it does so in the order in which they appear, and remember we want recognizers
to come first to avoid contract checking failures in the input and output contracts. We
will also avoid using :input-contract and :output-contract forms in definec because
they can often be avoided by defining types using defdata and they have consequences that
will only become apparent once we discuss how the theorem proving engine works. For
readers familiar with term-rewriting, they generate rewrite rules so considerations include
the orientation of the rules and how they interact with existing rewrite rules.

Just like and and or are macros, ACL2s also provides the macros * and + that take an
arbitrary number of arguments. For example,

1. (*) abbreviates 1

2. (* x) abbreviates (binary-* 1 x)

3. (* x y) abbreviates (binary-* x y)

4. (* x y z) abbreviates (binary-* x (binary-* y z))

5. (+) abbreviates 0

6. (+ x) abbreviates (binary-+ 0 x)

7. (+ x y) abbreviates (binary-+ x y)

8. (+ x y z) abbreviates (binary-+ x (binary-+ y z))

and so on. In addition, ACL2s provides the macros <=, >, >=, which are defined in terms of
<.

Other ACL2s macros include the following.

1. (== x y) abbreviates (equal x y)

2. (!= x y) abbreviates (not (equal x y))

ACL2s also includes the functions = and /= which are equivalent to == and !=, but with
input contracts that only allow the arguments to be numbers (rationals). Be careful between
our use of = (mathematical equality) and = (the ACL2s function).

Exercise 2.3 Define natp, a recognizer for natural numbers.

We also have built-in

numerator : Rational → Integer

denominator : Rational → Pos

J(numerator a)K is the numerator of the number we get after simplifying JaK.
J(denominator a)K is the denominator of the number we get after simplifying JaK.
To simplify an integer x, we return x.
To simplify a number of the form x/y, where x is an integer and y a natural number,

we divide both x and y by the gcd(|x|, y) to obtain a/b. If b = 1, we return a; otherwise we
return a/b. Note that b (the denominator) is always positive.



14 Reasoning About Programs

Since rational numbers can be represented in many ways, ACL2s returns the simplest
representation, e.g.,

J2/4K = 1/2

J4/2K = 2

J132/765K = 44/255

Next, we will define even-natp, a function that given a natural number determines
whether it is even. We will start with a recursive definition and here are some tests.

(check= (even-natp 0) t)

(check= (even-natp 1) nil)

(check= (even-natp 22) t)

Here is the definition.

(definec even-natp (x :nat) :bool

(or (= x 0)

(! (even-natp (- x 1)))))

This is a data-driven definition. Check the function and body contracts.
The astute reader will have noticed that we could have written a non-recursive function,

e.g.:

(definec even-natp (x :nat) :bool

(natp (/ x 2)))

This is not a data-driven definition. It required more insight. In fact, in ACL2s mode,
the functions evenp and oddp are built-in and operate on integers.

Next, let’s define a version of the above function that works for integers. Again, we will
write a recursive definition. Here are some tests.

(check= (even-integerp 0) t)

(check= (even-integerp 1) nil)

(check= (even-integerp -22) t)

The integer datatype can be characterized as follows.

Int : 0 | Int + 1 | Int − 1

So, a basic way of defining recursive functions over the integers is to have three cases, two
of which are recursive, as per the data definition above.

(definec even-integerp (x :int) :bool

(cond ((= x 0) t)

((< x 0) (! (even-integerp (+ x 1))))

(t (! (even-integerp (- x 1))))))

Note that ACL2s allows one to write :int instead of :integer in definec forms. The
above function uses the function zip, whose signature is

Int → Bool
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and which returns t iff its input is equal to 0. Two related functions that have the same
behavior but different signatures are zp and zerop.

zp : Nat → Bool

zerop : Rational → Bool

The above function uses cond, a macro that expands into a nest of ifs. In general,

(cond (c1 e1)

(c2 e2)

...

(cn en))

expands into

(if c1

e1

(if c2

e2

...

(if cn

en

nil)))

Notice the last nil! For the sake of code clarity, we will always make the last test of a
cond (cn above) equal to t. That is, we will always make the trailing else case explicit.

2.4 Other Atoms

Symbols and numbers are atoms. The ACL2s universe includes other atoms, such as strings
and characters. For example, "hello" is a string and #\A is a character. Strings and
characters evaluate to themselves. ACL2s also includes other types of atoms, e.g., complex
numbers, but we do not use them in these notes.

2.5 Conses and Lists

Conses and lists allow us to create non-atomic data.
Our first built-in function is a recognizer for conses.

consp : All → Boolean

To create a Cons, we use the built-in function cons.

cons : All× All → Cons

A Cons is just a pair and ACL2s displays conses using dot notation, e.g., (cons 1 2) is
displayed as (1 . 2).

We now define listp, a recognizer for List, as follows.
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listp : All → Boolean

(definec listp (l :all) :bool

(or (consp l)

(== l () )))

Here are the built-in functions for accessing the components of a Cons.3

car : List → All

cdr : List → All

A special type of list is a “true list.” We will use TL to denote the objects recognized
by the following function.

(definec true-listp (l :all) :bool

(if (consp l)

(true-listp (cdr l))

(== l () )))

So, true lists are lists whose last cdr is nil. Since true lists are so widely used, ACL2s
allows one to use :tl in definec forms to denote true lists (in addition to :true-list).
Also one can write tlp instead of true-listp. Finally, ACL2s allows the use of first and
rest instead of car and cdr. The general guideline is that when operating on true lists, we
will use first instead of car and rest instead of cdr.

ACL2s has two rules that allow us to write cons pairs in a variety of ways. The first rule
allows us to write the (1 . nil) as (1): if a cons pair has the symbol nil as its cdr, you
can drop the “dot” and the nil.

The second rule allows us to write (0 . (1)) as (0 1): if the cdr of a cons is also a cons,
you can drop the dot and the balanced pair of parentheses following it. So, (x . (. . .))
can be written as (x . . .). When ACL2s displays conses, it first simplifies the dot notation
using the above rules as many times as possible. For, the cons (1 . ((2 . (3 . nil)) .

(4 . nil))) is displayed as (1 (2 3) 4).
The semantics of the built-in functions is given by the following rules.

J(cons x y)K = (JxK .JyK)

J(consp x)K = t iff JxK is of the form (. . .) but is not ().

Notice that since consp is a recognizer it returns a Boolean. So, if JxK is an atom, then
J(consp x)K = nil.

Here are some examples.

J(consp 3)K = nil

J(consp (cons nil nil))K = t

J(consp nil)K = nil

The semantics of car and cdr is given with the following rules.

3The names car and cdr are related to the original implementation of Lisp on the IBM 704 and stand
for “Contents of the Address Register” and the “Contents of the Decrement Register.”
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J(car x)K = a, when JxK = (a . b) and nil otherwise

J(cdr x)K = b, when JxK = (a . b) and nil otherwise

Here are some examples.

J(car nil)K = nil

J(car (cons (if t 3 4) (cons 1 () )))K = 3

J(first (cdr (cons (if t 3 4) (cons 1 () ))))K = 1

J(rest (cons (if t 3 4) (cons 1 (if t nil t))))K = (cons 1 () )

If you try evaluating (rest (cons (if t 3 4) (cons 1 (if t () t)))) at the ACL2s
command prompt, here is what ACL2s reports.

(1)

Since lists are so prevalent, ACL2s includes a special way of constructing them. Here is an
example.

(list 1)

is just a shorthand for (cons 1 ()), e.g., notice that asking ACL2s to evaluate

(== (LIST 1) (cons 1 ()))

results in t. What is list really? (By the way notice that symbols in ACL2s, such as list,
are case-insensitive.) It is not a function. Rather, it is a macro. In general

(list x1 x2 · · · xn)

abbreviates (or is shorthand for)

(cons x1 (cons x2 · · · (cons xn nil) · · · ))

Remember tlp, first, rest and boolp? They are also macros that just expand into
true-listp, car, cdr and booleanp, respectively.

Sometimes we want versions of car and cdr that have stronger input contracts because
we only ever expect their arguments to be conses and if their inputs are nil, that should
be an error. Hence the following definitions.

(definec left (x :cons) :all

(car x))

(definec right (x :cons) :all

(cdr x))

The names left and right indicate that we selecting the left and right part of a cons
pair, respectively.

Here is yet another variant in which we require that the arguments are non-empty true
lists.

(definec head (x :ne-tl) :all

(car x))

(definec tail (x :ne-tl) :tl

(cdr x))

The type non-empty-true-list corresponds to non-empty true lists. We can also use
the more abbreviated, but equivalent, ne-tl.
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2.6 Contract Violations

Consider

(unary-/ 0)

If you try evaluating this, you get an error because you violated the contract of unary-/.
When a function is called on arguments that violate the input contract, we say that the
function call resulted in an input contract violation. If such a contract violation occurs, then
the function does not return anything.

Contract checking is more subtle than this, e.g., consider the following definition.

(definec foo (a :int) :bool

(if (posp a)

(foo (- a 1))

(rest a)))

ACL2s will not admit this function unless it can prove that every function call in the
body of foo satisfies its contract, a process we call body contract checking and that foo

satisfies its contract, a process we call function contract checking. These checks yield five
body contract conjectures and one function contract conjecture.

Exercise 2.4 Identify all the body contract checks and function contract checks that the
definition of foo gives rise to. Which (if any) of these conjectures is always true? Which
(if any) of these conjectures is sometimes false?

Notice that contract checking happens even before the function is admitted. This is
called “static” checking. Another option would have been to perform this check “dynami-
cally.” That is, all the contract checking above would be performed as the code is running.
Section 2.21 explores static vs dynamic checking in more depth.

2.7 Termination

All ACL2s function definitions have to terminate on all inputs that satisfy the input contract.
For example, consider the following “definition.”

(definec my-listp (a :all) :bool

(if (consp a)

(my-listp a)

(== a nil)))

ACL2s will not accept the above definition and will report that it could not prove
termination.

Let’s look at another example.
Define a function that given n, returns 0 + · · ·+ n.
Here is one possible definition:

;; sum-n: integer -> integer

;; Given integer n, return 0+1+2+...+n

(definec sum-n (n :int) :int

(if (zerop n)
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0

(+ n (sum-n (- n 1)))))

(check= (sum-n 5) (+ 1 2 3 4 5))

(check= (sum-n 0) 0)

(check= (sum-n 3) 6)

Exercise 2.5 The above function does not terminate. Why? Change only the input con-
tract so that it does terminate. Next, change the output contract so that it gives us more
information about the type of values sum-n returns.

2.8 Helpful Functions

In this section, we introduce several helpful functions. As you read this section, try to define
the functions on your own. These functions are built-in.

The function atom checks if its argument is an Atom, a non-Cons.

(definec atom (l :all) :bool

(! (consp l)))

Now consider endp, a function that checks if a list is empty.

(definec endp (l :list) :bool

(atom l))

Notice that endp is not a recognizer because the input contract is not t.
Here is yet another variant.

(definec lendp (x :tl) :bool

(atom x))

The functions atom, endp and lendp have the equivalent output contracts and bodies.
Atom is a recognizer (but for historical reasons does not end with a p). Atom, as the name
implies, recognizes atoms. Why do we want multiple functions with the same body but
different input contracts? Well, the idea is that we should only use endp when we are
checking a list and using endp gives us more guarantees; similarly we should use lendp

when checking true lists. If we make a mistake, then by using endp (or lendp), we enable
ACL2s to find the error for us. On the other hand, we should only use atom when in fact
we might want to check non-lists.

Support for stricter checking when constructing conses is provided by the following func-
tion.

(definec lcons (x :all y :tl) :ne-tl

(cons x y))

The llen function returns the length of a TL. This is the simplest example of a data-
driven definition, so let’s try defining it, with the caveat that the actual ACL2s definition,
provided later, is syntactically different. The idea is to define llen using a template derived
from the contract of its input variable, which is a TL. A TL is either empty or consists of
the first element of the TL and the rest of the TL. Therefore our template also has two
cases and in the second case, we can assume that llen returns the correct answer on the
rest of the list, so all that is left is to add one to the answer. If we want to use the strictest
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functions, which is usually a good idea, we can use lendp and tail instead of endp and
rest, respectively.

(definec llen (l :tl) :nat

; Returns the length of tl l.

(if (lendp l)

0

(1+ (llen (tail l)))))

Notice that the function definition above has a comment describing the function. A
semicolon (;) denotes the beginning of a comment and the comment lasts until the end of
the line.

ACL2s also provides the function len which takes anything as input and behaves the
same as as llen on true lists, but also returns the length of conses that are not necessarily
true lists.

(definec len (l :all) :nat

; Returns the length of l.

(if (consp l)

(1+ (len (cdr l)))

0))

The app function appends two lists together. Let’s try defining it using a data-driven
definition, with the caveat that the actual ACL2s definition, which is provided later, is syn-
tactically different. There are two arguments. In cases where there are multiple arguments,
we have to think about which of the arguments should control the recursion in app. It is
simpler when only one argument is needed, so let’s try it with the first argument. You might
find it useful to either visualize how app should work, or to try it on some examples, or to
develop a simple notation to experiment with your options. Here is what such a notation
might look like. First, let us see what happens if we try recurring on the first argument of
app. As was the case with the definition of llen, we have two cases to consider: either the
first argument is the empty list or it is a non-empty list. The first case is easy.

app () Y = Y

For the second case, we might come up with the following.

app (cons a B) Y = aBY = cons a (app B Y)

Notice that the first argument to app is a cons and we are using capital letters to denote
lists and lower-case letters to denote elements. The aBY just indicates that in the answer
first we want the element a and then the lists B and Y. How can we express that using a
recursive call of app on the rest of the first argument? By consing a onto the list obtained
by calling app on B and Y.

(definec app (x y :tl) :tl

; App appends two lists together

(if (endp x)

y

(cons (first x) (app (rest x) y))))

What if we try recurring on the second argument to app? Then the base case is easy.

app X () = X
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For the recursive case, we might come up with the following.

app X (cons a B) = XaB = (app (?? X a) B)

Notice that the second argument in the recursive call has to be in terms of B, the rest of the
second argument to app. The ?? function should add a at the end of X. We may call such
a function snoc since it is the symmetric version of cons. We do not have such a function,
so if we want to recur on the second argument, we need to define it.

Exercise 2.6 Define: snoc and a version of app that recurs on its second argument, as
outlined above.

Notice that data-driven definitions are guaranteed to terminate because in the recursive call
the argument upon which the definition is based is “decreasing.” We will make this precise
later.

ACL2s has a function binary-append which allows the second argument to be anything
and is defined as follows.

(definec binary-append (x :tl y :all) :all

(if (endp x)

y

(cons (first x) (binary-append (rest x) y))))

It also has the macro append which take an arbitrary number of arguments. For example

(check= (append (list 1) (list 2) (list) (list 3)) (list 1 2 3))

Remember the caveats? In ACL2s, app is a macro which expands into bin-app, where
bin-app is defined as follows.

(definec bin-app (x y :tl) :tl

(append x y))

The definitions of binary-append and bin-app are examples of a common pattern: when
we have functions that differ only in their contracts we define the version with the most
general contracts first and to use this version to define the rest of the functions. This allows
us to prove reason about all the functions by proving theorems only for the general version; to
reason about the other variants, we only use contract reasoning to expand the definitions into
the most general version. This pattern is also used to reason about semantically equivalent
functions, which comes up when reasoning about algorithms with different complexity. In
ACL2s, len is defined as above and llen is defined using the pattern just described.

(definec llen (x :tl) :nat

(len x))

We will see more examples of this pattern later.
The rev function reverses its argument.

(definec rev (x :all) :tl

(if (consp x)

(append (rev (cdr x)) (list (car x)))

()))

The lrev function reverses a true list and we define it using the previously mentioned
pattern.
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(definec lrev (x :tl) :tl

(rev x))

2.9 Contracts, Part 1

Even though contracts can be quite complicated, we will mostly restrict the use of contracts
by using definec as opposed to defunc.

Notice that defunc definitions of the following form can be written using only types with
definec.

(defunc f (x1 ... xn)
:input-contract t | (R1 xi) | (and (R1 y1) ... (Rm ym))

:output-contract (R (f x1 ... xn))
...)

The vertical bar | denotes a choice and our input contracts are of three possible forms,
where the yi are arguments to f without repetitions and R, Ri are recognizers.

Notice that if our contracts are of this form, then contract checking of the :input and
:output contracts is easy. We are using recognizers everywhere, so we know that contract
checking will succeed. For this reason, we often do not explicitly mention input and output
contract checking. This same argument applies to definec definitions.

2.10 Quote

Even though not every expression is an object in the universe, it is the case that for every
object in the universe, there is an expression that evaluates to it. An easy way to denote
such an object is to use quote. For example ’(if 1) denotes the two element list whose
first element is the symbol if and whose second element is 1.

Certain atoms, including numbers, but also characters and strings evaluate to themselves,
so we do not normally quote such atoms. However, when non-Boolean symbols are used in
an expression we have to be careful because symbols are used as variables. For example, x
in the body of lrev (above) is a variable. If we really want to denote the symbol r, we have
to write ’r. Consider the difference between (cons r l) and (cons ’r l). In the first
expression we are consing the value corresponding to the variable r to l, but in the second,
we are consing the symbol r to l.

2.11 Let

A let expression:

(let ((v1 x1)

...

(vn xn))

body)



A Simple Functional Language 23

binds its local variables, the vi, in parallel, to the values of the xi, and evaluates body
using that binding.

For example:

(let ((x ’(a b c))

(y ’(c d)))

(app (app x y) (app x y)))

evaluates to (a b c c d a b c c d). This saves us having to type ’(a b c) and ’(c

d) multiple times. Notice how the use of quotes also simplifies things, e.g., instead of (list
’a ’b ’c) we can write ’(a b c).

Maybe we can avoid having to type (app x y) multiple times. What about?

(let ((x ’(a b c))

(y ’(c d))

(z (app x y)))

(app (app x y) z))

This does not work. Why not? Because let binds in parallel, so x and y in the z binding
are not yet bound.

What we really want is a binding form that binds sequentially. That is what let* does.

(let* ((v1 x1)

...

(vn xn))

body)

binds its local variables, the vi, sequentially, to the values of the xi, and evaluates body
using that binding. So the following works.

(let* ((x ’(a b c))

(y ’(c d))

(z (app x y)))

(app (app x y) z))

As does this further simplified expression.

(let* ((x ’(a b c))

(y ’(c d))

(z (app x y)))

(app z z))

So, let and let* give us abbreviation power.
In fact, let* is really equivalent to nested let forms, e.g.,

(let* ((v1 x1)

(v2 x2)

...

(vn xn))

body)

is equivalent to the following.

(let ((v1 x1))

(let ((v2 x2))

...



24 Reasoning About Programs

(let ((vn xn))

body) ...))

2.12 Data Definitions

ACL2s provides a powerful data definition framework that allows us to define new data types.
New data types are created by combining primitive types using defdata type combinators.

The primitive types include rational, nat, integer and pos whose recognizers are
rationalp, natp, integerp and posp, respectively. Notice the naming convention we use:
we append the character “p” to typenames to obtain the name of their recognizer. In ACL2s,
the type all includes everything in the universe, i.e., every type is a subtype (subset) of
all.

We introduce the ACL2s data definition framework via a sequence of examples.
Singleton types allow us to define types that contain only one object. For example:

(defdata one 1)

All data definitions give rise to a recognizer. The above data definition gives rise to the
recognizer onep.

Enumerated types allow you to define finite types.

(defdata name (enum ’(emmanuel angelina bill paul sofia)))

Range types allow you to define a range of numbers. The two examples below show how
to define the rational interval [0..1] and the integers greater than 264.

(defdata probability (range rational (0 <= _ <= 1)))

(defdata big-nat (range integer ((expt 2 64) < _)))

Notice that we need to provide a domain, which is either Integer or Rational, and the set of
numbers is specified with inequalities using < and <=. One of the lower or upper bounds
can be omitted, in which case the corresponding value is taken to be negative or positive
infinity.

Product types allow us to define structured data. The example below defines a type
consisting of list with exactly two strings.

(defdata fullname (list string string))

Records are product types, where the fields are named. For example, we could have
defined fullname as follows.

(defdata fullname-rec (record (first . string)

(last . string)))

In addition to the recognizer fullname-recp, the above type definition gives rise to the
constructor fullname-rec which takes two strings as arguments and constructs a record of
type fullname-rec. The type definition also generates the accessors fullname-rec-first
and fullname-rec-last that when applied to an object of type fullname-rec return the
first and last fields, respectively.

We can create list types using the listof combinator as follows.
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(defdata loi (listof integer))

This defines the type consisting of lists of integers.
Union types allow us to take the union of existing types. Here is an example.

(defdata intstr (oneof integer string))

An equivalent way of writting the above is:

(defdata intstr (or integer string))

Recursive type expressions involve the oneof (or the equivalent or) combinator and
product combinators, where additionally there is a (recursive) reference to the type being
defined. For example, here is another way of defining a list of integers.

(defdata loi (oneof nil (cons integer loi)))

The data definition framework has more advanced features, e.g., it supports mutually-
recursive types, recursive record types, map types, custom types, and so on. We will intro-
duce such features as needed.

2.13 Pattern Matching

ACL2s provides pattern matching capability with the match macro. Pattern matching
supports predicates, including recognizers automatically generated by defdata, disjunctive
patterns and patterns containing arbitrary code. We will introduce pattern matching in
ACL2s via a sequence of examples.

(definec int-class (x :int) :pos

(match x

(:pos 1)

(:even 2)

(:neg 3)))

The match form above matches the variable x against the given patterns. Predicate/
recognizer patterns are defined using keywords. The keyword :pos corresponds to the
recognizer posp that recognizes positive integers. If x is a positive integer, then int-class

returns 1. The keyword :even corresponds to the predicate evenp. If x is even (and not
positive), then int-class returns 2. The keyword :neg corresponds to the recognizer negp
that recognizes negative integers. If x is a negative integer, then int-class returns 3. For
all keywords, except atom, we generate the corresponding predicate/recognizer by adding a
p to the end of the symbol (the recognizer for :atom is atom). The match macro requires
that the patterns are exhaustive and if that is not the case, then an error will be reported
during contract checking. In the above function, the note that if an integer is not positive
and it is not even, then it has to be negative, so the above is match form is exhaustive. Also,
the keyword :even corresponds to a predicate, which is not a recognizer, because evenp has
an input contract that its argument in an integer.

The following definition contains a more complex example of match, showing that pred-
icate/recognizer patterns can be nested. The match form matches any positive x, and then
checks if it even or odd. The nested match forms must also be exhaustive, given that x is
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positive. If x is not positive, then we check if it is negative and then we perform another
nested check. Finally, we check if x is 0. Constants such as 0 can be used as patterns, as
shown below.

(definec int-class2 (x :int) :pos

(match x

(:pos

(:even 1)

(:odd 2))

(:neg

(:even 3)

(:odd 4))

(0 5)))

The next definition is equivalent to the previous definition, but makes maximal use of &,
which matches anything and is not bound. Repeated occurrences of & may match different
structures.

(definec int-class3 (x :int) :pos

(match x

(:pos

(:even 1)

(& 2))

(:neg

(:even 3)

(& 4))

(& 5)))

Next, we show three logically equivalent definitions of fib.
The first definition uses disjunctive patterns. Disjunctive patterns are defined with the

use of :or, as shown below. This match form can be thought of as expanding into the match
form of the second version of fib. A disjunctive pattern can have any positive number of
patterns.

(definec fib (n :nat) :pos

:skip-tests t

(match n

((:or 0 1) 1)

(& (+ (fib (1- n)) (fib (- n 2))))))

(definec fib (n :nat) :pos

:skip-tests t

(match n

(0 1)

(1 1)

(& (+ (fib (1- n)) (fib (- n 2))))))

Patterns with arbitrary code are defined with the use of :t, as shown below, where the
pattern checks if n is less than 2.
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(definec fib (n :nat) :pos

:skip-tests t

(match n

((:t (< n 2)) 1)

(& (+ (fib (1- n)) (fib (- n 2))))))

The following definitions of pascal are equivalent and they highlight another useful
feature of match. If you use !sym in a pattern then sym should be a symbol that is already
bound in the context of the match form, and !sym matches only the current binding of
sym. Hence, in the first definition of pascal, the last pattern in the :or form matches a
list whose first element is anything, but whose second element is i (the first argument to
pascal). Notice that the first argument is also i, which explains the equivalence between
the two versions of pascal.

(definec pascal (i j :nat) :pos

:skip-tests t

(match (list i j)

((:or (0 &) (& 0) (& !i)) 1)

(& (+ (pascal (1- i) (1- j))

(pascal (1- i) j)))))

(definec pascal (i j :nat) :pos

:skip-tests t

(match (list i j)

((0 &) 1)

((& 0) 1)

((!i !i) 1)

(& (+ (pascal (1- i) (1- j))

(pascal (1- i) j)))))

The following examples show how to use match with conses. In mem, we first check if x
is nil. The symbols nil and t as well as symbols of the form *X* are treated in a fashion
similar to how we treat constants: they are not bound and only match their values. The
pattern (f . r) matches any cons, with f being the car and r being the cdr. Since mem is
checking whether e is a member of x, notice the use of !e to match e with the first element
of x.

(definec mem (e :all x :tl) :bool

(match x

(nil nil)

((!e . &) t)

((& . r) (mem e r))))

(definec subset (x y :tl) :bool

(match x

(nil t)

((f . r) (and (mem f y) (subset r y)))))

More complex patterns than (f . r) can be used to match with conses and lists. For
example, (x x y) and (’x (:x x) . t) are allowed patterns. The first pattern matches
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(1 1 2), ((1 2) (1 2) (3)), etc., and the second pattern only matches lists whose first
element is the symbol x, whose second element is a list of length two whose first element is
the keyword :x and whose cddr is t.

If you want to match an object, say obj, you can use the pattern ’obj. This allows you
to match keywords that may otherwise be interpreted as types.

Here is a more complex example.

(definec acl2-count2 (x :all) :nat

(match x

((a . b) (+ 1 (acl2-count2 a) (acl2-count2 b)))

(:rational

(:int (integer-abs x))

(& (+ (integer-abs (numerator x))

(denominator x))))

((:r complex/complex-rationalp)

(+ 1 (acl2-count2 (realpart x))

(acl2-count2 (imagpart x))))

(:string (length x))

(& 0)))

The exact meaning of this function is not relevant. It is used by ACL2 and ACL2s and it is
equivalent to the following definition.

(defun acl2-count (x)

(declare (xargs :guard t :mode :program))

(if (consp x)

(+ 1 (acl2-count (car x))

(acl2-count (cdr x)))

(if (rationalp x)

(if (integerp x)

(integer-abs x)

(+ (integer-abs (numerator x))

(denominator x)))

(if (complex/complex-rationalp x)

(+ 1 (acl2-count (realpart x))

(acl2-count (imagpart x)))

(if (stringp x)

(length x)

0)))))

The two definitions are logically equivalent, but the version using match is shorter and
clearer.

The above examples shows that there are two ways to specify recognizers. The first,
which we have already seen, is to use a keyword, such as :rational. Such keywords are
turned into recognizers by creating a regular symbol with a ”p” at the end, e.g., :rational
gets turned into rationalp. The more general mechanism is to specify a recognizer using the
:r (recognizer) form; an example is (:r complex/complex-rationalp) in the acl2-count2
definition above. In this way, you can also specify the package of the recognizer.

If you want to match a keyword, you can do that by quoting it. So ’:rational matches
the keyword, not the type.
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2.14 Properties

Instead of

(check= (app (list 1 2) (list)) (list 1 2))

we can write

(property (x y :all)

(== (app (list x y) (list)) (list x y)))

The above means that we are claiming that for all elements of the ACL2s universe, x
and y, (app (list x y) (list)) is equal to (list x y).

If we only had access to constants, like 1 and 2, we would have to write out an infinite
number of tests to say the same thing.

The property form has many options. As written above, we are asking ACL2s to test
and prove the property. ACL2s will fail if it cannot find a proof (even if the property is
true). If we want to just test a property, we can turn off the proof part as follows.

(property (x y :all)

:proofs? nil

(== (app (list x y) (list)) (list x y)))

In general, we will turn off proofs until later, when we get to theorem proving because
property can fail even if the property holds. Even if we turn off proofs, sometimes property
will report that it proved the property, but with proofs turned off such proofs are not required
for success; all that is required is that no counterexample is found.

Let’s explore property in more detail, using the functions even-natp and even-integerp,
defined previously.

Here is a property that claims that even-integerp and even-natp agree on natural
numbers.

(property (n :nat)

:proofs? nil

(== (even-integerp n)

(even-natp n)))

This is a property of our code. This gives us way more power than check= because if
the property is true, then that corresponds to an infinite number of checks.

You can specify extra hypotheses either using implication or using the :hyps and :body

options. For example, the previous property is equivalent to the following two properties.

(property (n :int)

:proofs? nil

(=> (>= n 0)

(== (even-integerp n)

(even-natp n))))

(property (n :int)

:proofs? nil

:hyps (>= n 0)

:body (== (even-integerp n)

(even-natp n)))
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By default, property performs contract checking. This is similar to contract checking
for definec. The hypotheses must satisfy their contracts, assuming everything before them,
such as the types. The functions in the conclusion must satisfy their contracts assuming
that the hypotheses and types hold.

Consider the property above. To satisfy the input contract of >=, we require that n

is a rational number, which the type of n (int) implies. To satisfy the input contract
of even-integerp, we require that n is an integer and to satisfy the input contract of
even-natp we require that n is a natural number, which holds due to the type of n and
the :hyps form. What if we remove the :hyps form? Then contract checking fails because
even-natp is only defined on natural number so we have no idea what it does with negative
integers.

Now, consider a second property form.

(property (n :int)

:proofs? nil

:hyps (< n 0)

:body (== (even-integerp n)

(even-natp (* n -1))))

Go over contract checking. Note that < is OK, because n is an integer and even-natp is
OK because n is an integer less than 0, so (* n -1) is a natural number.

Notice that these two properties characterize even-integerp in terms of even-natp, so
they show another way we could have defined even-integerp:

(definec even-integerp (x :int) :bool

(if (natp x)

(even-natp x)

(even-natp (* x -1))))

What if we write the following. Does contract checking succeed?

(property (n :nat)

:proofs? nil

:hyps (< 20/3 n)

(== (even-integerp n)

(even-natp n)))

Yes. The extra assumption (< 20/3 n) poses no problem because 20/3 and n are both
rationals.

What about the following?

(property (n :all)

:hyps (< 20/3 n)

:body (== (even-integerp n)

(even-natp n)))

Contract checking fails and reveals an error in our property because < does not have its
contracts satisfied and neither do the functions in the conclusion and an appropriate error
and counterexample are reported.
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2.15 Contracts, Part 2

We can write more complicated contracts using definec. For example, here is a version of
app with a stronger output contract.

(definec sapp (x y :tl) :tl

:output-contract (= (llen (sapp x y)) (+ (llen x) (llen y)))

(if (lendp x)

y

(lcons (head x) (sapp (tail x) y))))

In lieu of :input-contract, you can use :ic, :pre-condition, :pre, :require or
:assume. Similarly, you can use :oc, :post-condition, :post, :ensure or :guarantee in
lieu of :output-contract. What to use is a matter of personal preference. Multiple input
and output contract forms are also allowed and they are combined using conjunction, i.e.,
and. For example, here is an ugly, but equivalent, way of defining sapp.

(definec sapp (x y :all) :all

:ic (tlp x)

:pre (tlp y)

:post (tlp (sapp x y))

:output-contract (= (llen (sapp x y)) (+ (llen x) (llen y)))

(if (lendp x)

y

(lcons (head x) (sapp (tail x) y))))

Even though definec and defunc allow us to write complex output contracts, as shown
above, until you read Chapter 7, the output contracts of all functions you define should
consist of only a single recognizer. This is important because more complex output contracts
lead to rewrite rules that program the theorem prover and if you do not understand how
the theorem prover uses rewrite rules, you will wind up cause infinite rewrite loops. So, how
should we define sapp if we want to make it clear that the length of the output is equal to
the sum of the lengths of its inputs? By using properties, as shown below.

(definec sapp (x y :tl) :tl

(if (lendp x)

y

(lcons (head x) (sapp (tail x) y))))

The property can be specified as follows.

(property (x y :tl)

(= (llen (sapp x y))

(+ (llen x) (llen y))))

By the way, the restriction above only applies to output contracts, not input contracts,
e.g., if we wanted to define a version of app that requires both inputs to have the same
length, here is how we can do that.

(definec sapp (x y :tl) :tl

:ic (= (len x) (len y))

(app x y))

We can say more about the output and we use a property to do so.
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(property (x y :tl)

(=> (= (len x) (len y))

(= (llen (sapp x y))

(* 2 (llen x)))))

2.16 Concrete Testing

Consider the following function definition.

(definec foo (x y :nat z :tl) ...

...)

How should we test this definition? We consider this question in more detail in this
section. We start by considering concrete tests for foo, by which we mean tests of the
form (check= (foo ...) ...). Later, we discuss more powerful kinds of tests, symbolic
tests, which are based on property. In this section, unless we say otherwise, test will mean
concrete test.

The first method we discuss is contract-based testing. The idea is to use the input
contract, which specifies the types of the inputs, to generate tests. For our example, contract-
based testing indicates that we should have at least 8 tests because for each variable, there
should be as many tests as there are cases in the data definition of its type and all possible
combinations of tests spanning multiple variables should be considered. That gives rise to
2 ∗ 2 ∗ 2 = 8 tests. Here is a list tests that provides complete contract-based testing for foo.

(check= (foo 0 0 nil) ...)

(check= (foo 0 0 ’(a b)) ...)

(check= (foo 0 1 nil) ...)

(check= (foo 0 1 ’(a b) ...)

(check= (foo 1 0 nil) ...)

(check= (foo 1 0 ’(a b)) ...)

(check= (foo 1 1 nil) ...)

(check= (foo 1 1 ’(a b)) ...)

Is this the best we can do? Notice that contract-based testing does not depend on the
function definition. Suppose foo has the following definition.

(definec foo (x y :nat z :tl) :int

(cond ((zp x) (* y 2))

((zp y) (* x 2))

((< x y) (foo y x z))

((oddp (len z)) (* y 4))

((< y x) (* x 4))

((oddp (- x y)) -15)

((evenp (- x y)) 24)

(t 43)))

Why are the above contract-based tests not enough? One reason is that they do not
cover all of the code, e.g., none of the above tests exercise the third cond case. This leads
us to coverage-based testing. The goal is to have enough tests so that all of the code in the
function definition is executed at least once. Try defining an appropriate set of tests.
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The tests we already have cover the first two cond cases and the penultimate case, so
out of the eight cases, contract-based testing covered less than half of the cases. This means
that most of the contract-based tests above are redundant in terms of cond case coverage.
We define the expression coverage of a set of concrete tests for a given function to be the
number of unique expression occurrences in the function definition that are executed when
running the set of tests over the number of unique expression occurrences in the function
definition. Consider the third case in the above definition; it has 7 expression occurrences:
(< x y), x, y, (foo y x z), y, x and z. Notice that x and y appear twice because there
are two distinct occurrences of these expressions in this case and, in general, a test that
leads to the execution of one occurrence of an expression does not necessarily lead to the
execution of a different occurrence of the same expression.

Here are tests for cases 3, 4 and 5.

(check= (foo 1 2 nil) ...)

(check= (foo 5 5 ’(a)) ...)

(check= (foo 5 4 nil) ...)

Case 6 is interesting because there is no test that can satisfy the case. The expression
“-15” is an example of unreachable code, code that will never be executed, no matter what
input is provided to foo. Such code typically (but not always!) indicates an error. It
will almost certainly be an error for any code you write for this class. The existence of
unreachable code (sometimes also called dead code) means that 100% expression coverage
is not always possible. Here is how we can test the claim using property.

(property (x y :nat z :tl)

:proofs? nil

:hyps (and (! (zp x))

(! (zp y))

(! (< x y))

(! (oddp (len z)))

(! (< y x)))

:body (! (oddp (- x y))))

If case 6 is reachable, then there should be a counterexample to the above claim and we
can use that counterexample to create a concrete test. However, not only does property
tell us that this is not the case, it also reports that it proved the conjecture, meaning that
no test exists that will make case 6 true.

What about the rest of the cases?

Exercise 2.7 Is case 7 reachable? Use property to either show that it is not or to find a
concrete test that satisfies the case.

Exercise 2.8 Is case 8 reachable? Use property to either show that it is not or to find a
concrete test that satisfies the case.

Exercise 2.9 Show that for every real number r > 0, there is an admissible ACL2s function
f and a set of contact-based tests whose expression coverage is < r.

We define the maximal expression coverage of a function to be the maximum possible
expression coverage over all possible sets of concrete tests.

Exercise 2.10 What is the maximal expression coverage for foo?
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Exercise 2.11 Exhibit a set of tests with minimal cardinality that obtains maximal expres-
sion coverage for foo.

Now consider the following function definition.

(definec bar (x y :nat z :tl) :int

(foo x y z))

We can obtain 100% expression coverage of bar with a single test, even though it is
equivalent to foo. This example suggests that we may want a stronger notion of coverage.
Given a function f , the reachable functions from f , denoted R(f), are obtained by executing
f on all legal inputs and collecting the set of functions that are called during any of these
executions. For example, R(bar) includes foo, zp, *, oddp, len and consp (used to define
len), among others. We define the reachable expression coverage of a set of tests for f
to be the number of unique expression occurrences in definitions of the functions in R(f)
that are executed when running the set of tests over the number of unique expression
occurrences in the definitions of the functions in R(f). Notice that built-in functions do
not have definitions, hence, they do not contribute expression occurrences in the definition
of reachable expression coverage. We define the maximal reachable expression coverage of a
function to be the maximum possible reachable expression coverage over all possible sets of
concrete tests.

Exercise 2.12 Exhibit a set of tests with minimal cardinality that obtains maximal expres-
sion coverage for foo.

There are many ways to extend the above notions, e.g., instead of considering all reach-
able functions, we may consider functions within a certain distance in the call graph of the
function. We may also allow built-in functions to be annotated with a set of conditions that
are used in lieu of definitions, e.g., we may annotate consp with { (consp x), (atom x) }
indicating that for full expression covererage we want tests that make consp both true and
false.

There are also many types of coverage metrics that have been defined, with many in-
teresting subtleties. Hopefully, you will cover this topic in more detail in a good software
engineering course.

2.17 Property-Based Testing

We now consider property-based testing, a significantly more powerful kind of testing.
Property-based testing involves specifying a collection of properties that your code should
satisfy. Such tests are sometimes called symbolic tests and are written, in ACL2s, using
property. When defining functions, you should use property to write down properties
that should be true of the functions you define.

When designing such properties, make the properties implementation independent, e.g., if
a function is supposed to remove duplicates, but the exact order in which elements appear in
the output is not specified, then write property properties that do not assume a particular
order. This makes it possible to go back and modify the function in the future without
having the properties fail. Notice that the same advice holds for check= forms. For example,
instead of checking that the output is some particular list, check that it is a permutation of
the list.
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Notice that the following symbolic test for foo is useless.

(property (x y :nat z :tl)

:proofs? nil

(intp (foo x y z)))

Why is it useless?
Because that is just the function contract and ACL2s already either proves or tests this

contract. The general principle here is that you want to avoid redundant properties. A
property is redundant if it is implied by the conjunction of the rest of the properties.

Properties related to output contracts are often useful. For example, we may want to
check that the type specified for foo is the most restrictive type we can use. How can we
do that? Well, we may want to check that it is possible for foo to return positive integers,
negative integers and 0. Here is how to do that. The following form succeeds only if the
property form fails.

(must-fail

(property (x y :nat z :tl)

:proofs? nil

(!= (foo x y z) 0)))

This example shows that we sometimes want properties that should fail because their
failure means that something we care about is possible. In the above example, we wanted
to see that it is possible for foo to return 0 and if property can find such an example, then
it will fail and the must-fail form will succeed.

What if we tried to avoid the use of must-fail by using this property?

(property (x y :nat z :tl)

:proofs? nil

(= (foo x y z) 0))

Notice that this property fails because foo does not always return 0.

Exercise 2.13 Write a property using must-fail and property to check that it is possible
for foo to return a positive integer. Is this claim true?

Exercise 2.14 Write a property using must-fail and property to check that it is possible
for foo to return a negative integer. Is this claim true?

Exercise 2.15 Rewrite foo by removing all of the dead code. Use ACL2s to check your
definition.

Exercise 2.16 Rewrite the definition of foo from Exercise 2.15 by restricting the output
contract based on what you discovered in exercises 2.13 and ex:foo-neg. Use ACL2s to
check your definition.

Exercise 2.17 Write a property using must-fail and property to check that it is possible
for foo to return an odd integer. Is this claim true?

We define the range of a function to be the set of values it can return, given inputs that
satisfy the function’s input contract. Notice that the range of a function always satisfies the
the output contract (if ACL2s admitted the function definition). However not every value
that satisfies a function’s output contract is in the range of the function.
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Exercise 2.18 What is the range of foo?

Exercise 2.19 Show that the range of foo is a subset of the set of even natural numbers.
You can do that by writing a property making this claim and checking it with ACL2s.

Exercise 2.20 Show that the set of even natural numbers is a subset of the range of foo.
You can do that by defining a function foo-witness that given as input an even natural
number, say n, returns a list containing a natural number, a natural number and a true list,
say x, y and z such that (foo x y z) is n. This function generates a witness to the claim
that n is in the range of foo. Next write a property formalizing the claim that foo-witness
does what we want and check the property using ACL2s.

In the above exercises we discovered that the range of foo is a strict subset of the
revised output contract. Does that mean that we should change the output contract? No
necessarily. The general guideline we will follow is that output contracts will only specify
“type-like” constraints and these constraints should be as restrictive as we can make them.
For example, using :nat instead of :int for the output contract of foo is in line with
the above guidelines. If the property that foo always returns an even natural number is
important, then we will add it as a property. This is only a guiding principle. Writing code
is an art form and the artist is free to express themselves as they see fit. Nevertheless, if
you decide that in a particular situation it makes sense to violate these guidelines, make
sure you have a compelling reason for doing so.

2.18 Designing Programs

Consider the following function definition.

(definec foo (x y :nat z :tl) ...

...)

You should write as per the above guidelines. Tests and examples are very important.
Use them to understand the specification, e.g., by considering all cases. Visualize the
computation; this helps you write the code. If you have difficulty writing code for the
general case, use examples as a guide.

Most of the code we are going to look at is data driven: we will be recurring by counting
down by 1 or by traversing a list. Take advantage of this as follows.

1. Identify the variable(s) that control the recursion.

2. Once you do that, write down the template consisting of the base cases and recursive
cases.

3. If you get stuck, look at the examples and generalize.

4. After you write your program, evaluate it on the examples you wrote.

Contracts play a key role in how we think about function definitions. Make sure you
understand the contracts for all the functions you use. Many programming errors students
make are due to contract violations, so as you are developing your program check to see
that every function call respects its contract.



A Simple Functional Language 37

Efficiency is a significant issue when designing systems, but it is mostly an orthogonal
issue. For example, if we want to develop a sorting algorithm, then the specification for a
sorting algorithm is independent of the implementation. This separation of concerns allows
us to design systems in a modular, robust way. In this course, we will not care that much
about efficiency. It will come up and we will mention it, but our emphasis will be on simple
definitions and specifications.

The templates that arise when defining functions over true lists and natural numbers
should be obvious, but here is a brief review. Recall the data definition for true lists.

TL : () | (cons All TL)

We say that cons is a constructor. When we define recursive functions, we use the destructors
car (or first) and cdr (or rest) to destruct a cons into its constituent parts. Functions
defined this way work because every time I apply a destructor I decrease the size of an
element. What about nat? The idea is similar.

Nat : 0 | Nat + 1

So, + 1 is a constructor and the corresponding destructor used when we define recursive
functions is - 1. What about integer?

Int : 0 | Int + 1 | Int − 1

So, + 1 and - 1 are the constructors and the corresponding destructors used when we define
recursive functions are - 1 and + 1, respectively.

We now discuss what templates user-defined datatypes that are recursive give rise to.
Many of the datatypes we define are just true lists of existing types. For example, we can
define a true list of rationals as follows. Notice listof gives us a true list.

(defdata lor (listof rational))

If we define a function that recurs on one of its arguments, which is a true list of rationals,
we just use the true list template and can assume that if the list is non-empty then the first
element is a rational and the rest of the list is a list of rationals.

If we have a more complex data definition, say:

(defdata PropEx (oneof boolean symbol

(list UnaryOp PropEx)

(list Binop PropEx PropEx)))

Then the template we wind up with is exactly what you would expect from the data
definition.

(definec foo (px :propex ...) ...

(cond ((booleanp px) ...)

((symbolp px) ...)

((UnaryOpp (first px)) ... (foo (second px)) ...)

(t ...(foo (second px)) ... (foo (third px)) ...)))

Notice that in the last case, there is no need to check (BinOpp (first px)), since it
has to hold, hence the t. Also, for the recursive cases, we get to assume that foo works
correctly on the destructed argument ((second px) and (third px)).
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All of your functions where the recursion is governed by variables of type propexp should
use the above template.

We now explore data definitions in a little more detail. Recall the data definition for
true lists.

TL : () | (cons All TL)

This definition is recursive, i.e., TL is defined in terms of itself. Why does such a circular
definition make sense?

The above is really a fixpoint definition of lists. This view allows us to do away with the
circularity. Here’s the idea. Start with

TL0 = {()}

and then create all conses of the form

(cons x l)

and repeat, i.e., we can define

TLi+1 = {()} ∪ {(cons x l) : x ∈ All ∧ l ∈ TLi}

and now we define TL to be the union of all the TLi.

TL =
⋃

i∈N

TLi

When we define recursive functions using templates based on this data definition, we use
the destructors car (or first) and cdr (or rest) to destruct a cons into its constituent
parts. Functions defined this way make sense because they terminate: every time we apply a
destructor we take an element in TLi+1 (let i+1 be the smallest index such that the element
is in TLi+1 and notice that because first we check that the element is not the empty list, we
know that the element is not in TL0) and get, at worst, an element in TLi. Therefore, after
finitely many steps we have to reach the base case and therefore the function is guaranteed
to terminate. In this way, we have shown how to remove the apparent circularity in the
definition of lists.

Let’s rephrase this to see why we used the term fixpoint. We start by defining the
following function.

f(Y ) = {()} ∪ {(cons x l) : x ∈ All ∧ l ∈ Y }

A fixpoint for f is a set Z such that f(Z) = Z. Does f have a fixpoint? Yes. TL! That is:

f(TL) = TL

How do we compute a fixpoint? Well, one way is to take the limit of f as follows

TL = lim
i∈N

f i+1(∅)

where f i is the i-fold composition of f so f0(X) = X , f1(X) = f(X), f2(X) = f(f(X)), . . ..
This is what is called the least fixpoint. Notice that f i(∅) = TLi. There is a rich theory of
fixpoints and they play an important role in computer science.
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2.19 Program Mode

Sometimes it is helpful to temporarily turn off theorem proving in ACL2s. Why would you
want to? Well, say you want to quickly prototype your function definitions because ACL2s
is complaining or you just want to use ACL2s without all the theorem proving turned on.

The answer is yes you can. Just put this one line right before the point you want to
switch from ACL2s’s normal mode, called logic mode, to program mode.

:program

ACL2s will still test contracts and will report a contract violation if it finds it. Think of
this as free testing. ACL2s will not worry about termination or about proving any theorems
at all (so body contracts and function contracts are not proved).

Once you’re done exploring, you can undo past the :program command to go back to
logic mode, or you can even switch back and forth with the following command

:logic

If you mix up modes like this, then you will not be able to define logic mode functions
that depend on program mode functions.

2.20 Dealing with Definition Failures

While it’s amazing that ACL2s can statically prove that your functions satisfy their contracts
automatically (you’ll see how amazing this is once we start proving theorems), unfortunately,
there will be times when you give it a function definition that is logically fine, but, alas,
ACL2s cannot prove that it is correct.

If this has ever happened to you, read on.
What do you do in such a situation?
Well, there are two options I want to show you. Let’s go through them in turn.
The first option is to revert to “program mode” and turn off testing. In program mode

and with testing off, ACL2s behaves the way most programming languages do: ACL2s does
not try to prove or test any conjectures. Don’t resort to using Racket or Lisp or whatever.
Do this instead! For example, suppose you have the following definition.

(definec !! (x :int) :int

(if (zip x)

1

(* x (!! (1- x)))))

ACL2s complains about something (termination), so you can turn off testing and revert
to program mode as follows. Note: it is important to turn off testing before going to
program mode to avoid stack overflows, timeouts and other unpleasant consequences of
testing non-terminating code.

(acl2s-defaults :set testing-enabled nil)

:program

Now, if you submit the function definition, ACL2s accepts it.

(definec !! (x :int) :int

(if (zip x)
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1

(* x (!! (1- x)))))

Now you can test your code. For example:

(!! 10)

works as expected, but

(!! -1)

leads to a stack overflow (which indicates a termination problem).
Unfortunately, if you define a program mode function, then every new function that

depends on it will also have to be a program mode function. My suggestion is that you do
this to debug your code. If you can fix what the problem is great. If not, then it is better
to use the next option if you can.

The first option was draconian. You turned off the power of the theorem prover com-
pletely.

The second option represents a more measured response. Instead of turning off the
theorem prover, we tell it to try proving termination, etc., but if it fails, to continue anyway.
In essence, we are asking ACL2s for its best effort.

(acl2s-defaults :set testing-enabled nil)

(set-defunc-termination-strictp nil)

(set-defunc-function-contract-strictp nil)

(set-defunc-body-contracts-strictp nil)

The first command above is as before: we turn off testing. You don’t have to do that,
but sometimes it helps (e.g., if you defined a non-terminating function and we try to test
it, you’ll get a stack overflow).

The other commands tell ACL2s to not be strict with regards to termination, function
contracts and body contracts. These command control the behavior of defunc and definec.
After ACL2s finishes processing your function definition, it gives you a little summary of
what it was able to prove.

Let’s see what happens with our above function definition. Here is what ACL2s outputs.

...

**The definition of !! was accepted in program mode!!

Function Name : !!

Termination proven ------ [ ]

Main Contract proven ---- [ ]

Body Contracts proven --- [ ]

This means that neither termination, nor the main contract, nor the body contracts were
proven.

If we fix the contract problem, e.g., as follows.

(definec !! (x :nat) :int

(if (zerop x)

1

(* x (!! (1- x)))))

Then ACL2s does prove everything and now the output looks as follows.

...
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Function Name : !!

Termination proven ------ [*]

Main Contract proven ---- [*]

Body Contracts proven --- [*]

So, the *’s tell you what parts of the function admission process was successful.
If you only need to do this for 1 function definition, you can revert back to the default

settings with the following commands:

(acl2s-defaults :set testing-enabled t)

(set-defunc-termination-strictp t)

(set-defunc-function-contract-strictp t)

(set-defunc-body-contracts-strictp t)

So, you can go back and forth and you can selectively turn testing on and off.
If you get stuck on a homework problem, use the second option, but you can also use

the first option if you really need to. If your code is correct, you will get full credit either
way.

2.21 Debugging Code

A very useful type of checking that ACL2s performs is contract checking. This includes
function contracts, body contracts and contract contracts, as described previously. If you
define a function in logic mode, say f, then ACL2s proves, statically that the following hold.

1. evaluating f’s input contract on any (well-formed) inputs whatsover will not lead to
any contract violations, and

2. evaluating the body of f on any inputs that satisfy f’s input contract will never lead
to a contract violation for any function that may be called during this evaluation,
including functions that are called directly or indirectly, and

3. the evaluation of f’s body on any inputs that satisfy f’s input contract will terminate,
and

4. the evaluation of f’s body on any inputs that satisfy f’s input contract will yield a
value that satisfies f’s output contract.

Therefore, for logic mode definitions, ACL2s only needs to check input contract for
“top-level” forms. For example, consider the following definition.

(definec tapp (x y :tl) :tl

(if (lendp x)

y

(lcons (head x) (tapp (tail x) y))))

Now, let us evaluate the following.

(tapp ’(1 2 3) ’(4))

ACL2s, as expected, returns the following result.

(1 2 3 4)
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If we want to see how it does that, we can trace the appropriate set of functions, which
in our case only includes tapp, as follows.

(trace$ tapp)

Now, when we evaluate the same expression:

(tapp ’(1 2 3) ’(4))

we see the following output.

1> (ACL2 *1* ACL2S::TAPP (1 2 3) (4))

2> (TAPP (1 2 3) (4))

3> (TAPP (2 3) (4))

4> (TAPP (3) (4))

5> (TAPP NIL (4))

<5 (TAPP (4))

<4 (TAPP (3 4))

<3 (TAPP (2 3 4))

<2 (TAPP (1 2 3 4))

<1 (ACL2 *1* ACL2S::TAPP (1 2 3 4))

(1 2 3 4)

Here is what is going on here. When we defined tapp, lots of things happened. One of
those things is that we defined the function ACL2 *1* ACL2S::TAPP. This is a function that
includes code to check the input contract for tapp. Why do we need this? Because a user
could type anything they want at the REPL, including something like this:

(tapp ’(1 . 2) ’(3))

Notice we have a contract violation and we get the following error.

1> (ACL2 *1* ACL2S::TAPP (1 . 2) (3))

ACL2 Error in TOP-LEVEL: The guard for the function call (TAPP X Y),

which is (AND (TRUE-LISTP X) (TRUE-LISTP Y)), is violated by the arguments

in the call (TAPP ’(1 . 2) ’(3)).

You can think of “guard” in the output generated by ACL2s as being synonymous with
“contract.” So, since we cannot stop a user from calling tapp (or any logic mode function)
on arguments that violate the function’s input contract, we check that these top-level forms
satisfy the appropriate input contracts with the “star one star” functions. After that, no
further checking is required since ACL2s already performed static contract checking, as
described above.

What if we defined tapp as a :program mode function as follows?

(definec tapp (x y :tl) :tl

(declare (xargs :mode :program))

(if (lendp x)

y

(lcons (head x) (tapp (tail x) y))))

Well, now ACL2s does not perform static contract checking. What if we trace tapp and
run it on the same example above?

(tapp ’(1 2 3) ’(4))
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We see the following output.

1> (ACL2 *1* ACL2S::TAPP (1 2 3) (4))

2> (ACL2 *1* ACL2S::TAPP (2 3) (4))

3> (ACL2 *1* ACL2S::TAPP (3) (4))

4> (ACL2 *1* ACL2S::TAPP NIL (4))

<4 (ACL2 *1* ACL2S::TAPP (4))

<3 (ACL2 *1* ACL2S::TAPP (3 4))

<2 (ACL2 *1* ACL2S::TAPP (2 3 4))

<1 (ACL2 *1* ACL2S::TAPP (1 2 3 4))

(1 2 3 4)

Notice that ACL2s is now checking contracts for all the function calls. This can incur a
significant computational cost.

You can turn off all tracing as follows.

(untrace$)

You can also turn off tracing for specific functions as follows.

(untrace$ tapp)

Sometimes users attempt to define a function in ACL2s and get counterexamples but
have difficulty determining why the counterexamples are problematic.

In such cases, if you evaluate the code in your head using the counterexamples ACL2s
generates, you’ll see what the issue is, but maybe that’s hard and you want help.

Suppose you are trying to define a function, f, that has one argument, l, and you get
an error like the following.

Query: Testing body contracts ...

**Summary of Cgen/testing**

We tested 3 examples across 1 subgoals, of which 3 (3 unique) satisfied

the hypotheses, and found 3 counterexamples and 0 witnesses.

We falsified the conjecture. Here are counterexamples:

[found in : "top"]

-- ((L ’(A B C)))

-- ((L ’X))

-- ((L ’Y))

You could try evaluating the function on any of the counterexamples above, but maybe
you still can’t figure out what is going on. Here is what you can do instead.

First, turn off testing (described above) with the following command.

(acl2s-defaults :set testing-enabled nil)

Then, switch to :program mode.
Then force ACL2s to accept the definition be resumbitting the defunc or definec form.

Since testing is turned off and we are in :program mode, the function will be accepted by
ACL2s.

Next, we trace the function, using trace$ and then we can evaluate our function at the
REPL using the counterexamples ACL2s previously generated for us. During this process,
we may potentially trace even more functions, if we want to better visualize what is going
on. One useful way to evaluate our function using the ACL2s counterexamples is to use
let:
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(let ((l ’(a b c)))

(f l))

Once we figure out what the problem is, we can undo the definitions, turn off tracing,
fix the issue and resume.

2.22 Exercises

For all programming exercises, make sure to add tests and properties as per the testing
guidelines.

Exercise 2.21 Define the function rr.

rr : Nat× TL → TL

(rr n l) rotates the true list l to the right n times.

(definec rr (n :nat l :tl) :tl

...)

Here are some initial tests.

(check= (rr 1 ’(1 2 3)) ’(3 1 2))

(check= (rr 2 ’(1 2 3)) ’(2 3 1))

(check= (rr 3 ’(1 2 3)) ’(1 2 3))

(check= (rr 5 ’(1 2 3)) ’(2 3 1))

Exercise 2.22 Define the function err, an efficient version of rr.

err : Nat× TL → TL

(err n l) returns the list obtained by rotating l to the right n times but it does this
efficiently because it actually never rotates more than (len l) times.

(definec err (n :nat l :tl) :tl

...)

Make sure that err is efficient by timing it with a large n and comparing the time with
rr. Here is how you can do that.

(time$ (rr 10000000 ’(a b c d e f g)))

(time$ (err 10000000 ’(a b c d e f g)))

Exercise 2.23 Here is a data definition for a bitvector.

(defdata bit (oneof 0 1))

(defdata bitvector (listof bit))

We can use bitvectors to represent natural numbers as follows. The list

(0 0 1)
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corresponds to the number 4 because the first 0 is the “low-order” bit of the number which
means it corresponds to 20 = 1 if the bit is 1 and 0 otherwise. The next bit corresponds to
21 = 2 if the bit is 1 and to 0 otherwise and so on. So the above number is

0 + 0 + 22 = 4.

As another example, 31 is
(11111)

or
(1111100)

or
. . .

Define the function n-to-b that given a natural number, returns a bitvector list of minimal
length, corresponding to that number.

(definec n-to-b (...)

...)

Here are some initial tests.

(check= (n-to-b 0) ’())

(check= (n-to-b 7) ’(1 1 1))

(check= (n-to-b 10) ’(0 1 0 1))

Exercise 2.24 Define the function b-to-n that given a bitvector, as defined in Exer-
cise 2.23 returns the corresponding natural number.

(definec b-to-n (...)

...)

Here are some initial tests.

(check= (b-to-n ’(0 1 0 1)) 10)

(check= (b-to-n ’(1 1 1)) 7)

(check= (b-to-n ’(0 0 1)) 4)

(check= (b-to-n ’(1 1 1 1 1)) 31)

(check= (b-to-n ()) 0)

Exercise 2.25 Define the following properties relating the functions n-to-b and b-to-n

from Exercises 2.23 and 2.24 and determine is they are true. If not, fix them in the minimally
invasive way to make them true.

Property 1: The function b-to-n is the inverse of function n-to-b.
Property 2: The function n-to-b is the inverse of function b-to-n.

Exercise 2.26 The permutations of a (true) list are all the lists you can obtain by swapping
any two of its elements (repeatedly). For example, starting with the list

(1 2 3)

I can obtain
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(3 2 1)

by swapping 1 and 3.
So the set of permutations of (1 2 3) is:

{(1 2 3), (1 3 2), (2 1 3), (2 3 1), (3 1 2), (3 2 1)}.

Notice that if the list is of length n and all of its elements are distinct, it has n! (n
factorial) permutations.

Given a list, say (a b c d e), we can define any of its permutations using a list of
distinct natural numbers from 0 to the length of the list −1, which tell us how to reorder the
elements of the list. Let us call this list of distinct natural numbers an arrangement. For
example applying the arrangement (4 0 2 1 3) to the list (a b c d e) yields (e a c b

d).
Define the function find-arrangement that given two non-empty true lists either returns

nil if they are not permutations of one another or returns an arrangement such that applying
the arrangement to the first list yields the second list. Note that if the lists have repeated
elements, then more than one arrangement will work. In such cases, it does not matter
which of these arrangements you return.

(definec find-arrangement (...)

...)

Here are some initial tests.

(check= (find-arrangement ’(a b c) ’(a b b)) nil)

(check= (find-arrangement ’(a b c) ’(a c b)) ’(0 2 1))

(check= (find-arrangement ’(a a) ’(a a)) ’(0 1))

Note that you will have to define some helper functions. Make sure to write interesting
properties.

Exercise 2.27 This exercise depends on Exercise 2.26. The goal is to define a function to
apply an arrangement to a list, thereby obtaining a permutation of the list.

First, an arrangement has to be a list of positive integers (but not every list of positive
integers is an arrangement!)

(defdata lop (listof pos))

Define apply-arrangement, a function that takes a true-list, l, and an arrangement, a,
(of type lop) as arguments and, assuming that a is really an arrangement, then it returns
the result of applying the arrangement a to the list l. You might find the function nth

useful. If finds the nth number in a list, using 0-indexing, so (nth 0 ’(0 1 2 3)) is 0,
(nth 3 ’(0 1 2 3)) is 3 and if the number is too big, nil is returned, e.g., (nth 10 ’(0

1 2 3)) is nil.

(definec apply-arrangement (l ... a ...) ...

...)

(check= (apply-arrangement ’(a b c) ’(1 3 2))

’(a c b))
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Exercise 2.28 This exercise depends on Exercises 2.26 and 2.27. Use property to for-
malize the claim that if x is a permutation of y then applying the arrangement (with
apply-arrangement) returned by find-arrangement to x results in y. However, insted
of doing this for arbitrary lists, assume that x and y are of type losyms, as defined below.

(defdata syms (enum ’(a b c)))

(defdata losyms (listof syms))

You can ask ACL2s to increase the testing it does with the following.

(acl2s-defaults :set num-trials 50000)

Use the above property to test your solutions to Exercises 2.26 and 2.27.

Exercise 2.29 This exercise depends on Exercises 2.26, 2.27 and 2.28.
Consider the following buggy solution for find-arrangements from Exercise 2.26.

;; When called by fa, if x is in y starting at some index which is >= i

;; and not in acc, then the index function returns the first such index.

;; Otherwise, it returns 0.

(definec index (x :all y :tl i :posp acc :tl) :nat

(cond ((endp y) 0)

((and (== x (car y))

(! (in i acc)))

i)

(t (index x (rest y) (+ i 1) acc))))

;; fa is a helper function for find-arrangement. It is called only if

;; x and y are lists of the same length. It finds an arrrangement if

;; one exists, otherwise it returns nil.

(definec fa (x y acc :tl) :tl

(if (endp x)

(rev acc)

(let ((i (index (first x) y 1 acc)))

(if (zp i)

nil

(fa (rest x) y (cons i acc))))))

(definec find-arrangement (x y :ne-tl) :tl

(if (= (len x) (len y))

(fa x y nil)

nil))

(check= (find-arrangement ’(a b c) ’(a b b)) nil)

(check= (find-arrangement ’(a b c) ’(a c b)) ’(1 3 2))

(check= (find-arrangement ’(a a) ’(a a)) ’(1 2))

Notice that all the check= forms pass. However, the definition of find-arrangement

is buggy. We will use property-based testing to more thoroughly test this implementation of
find-arrangement.

Use the property from Exercise 2.28 to find counterexamples. Use these counterexamples
to fix the definition of fa (do not modify any other definitions). Make sure that your
proposed fix passes testing.
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Propositional Logic

The study of logic was initiated by the ancient Greeks, who were concerned with analyzing
the laws of reasoning. They wanted to fully understand what conclusions could be derived
from a given set of premises. Logic was considered to be a part of philosophy for thousands
of years. In fact, until the late 1800’s, no significant progress was made in the field since
the time of the ancient Greeks. But then, the field of modern mathematical logic was born
and a stream of powerful, important, and surprising results were obtained. For example, to
answer foundational questions about mathematics, logicians had to essentially create what
later became the foundations of computer science. In this class, we’ll explore some of the
many connections between logic and computer science.

We’ll start with propositional logic, a simple, but surprisingly powerful fragment of logic.
Expressions in propositional logic can only have one of two values. We’ll use T and F to
denote the two values, but other choices are possible, e.g., 1 and 0 are sometimes used.

The expressions of propositional logic include:

1. The constant expressions true and false : they always evaluate to T and F , respectively.

2. The propositional atoms, or more succinctly, atoms. We will use p, q, and r to denote
propositional atoms. Atoms range over the values T and F .

Propositional expressions can be combined together with the propositional operators,
which include the following.

The simplest operator is negation. Negation, ¬, is a unary operator, meaning that it is
applied to a single expression. For example ¬p is the negation of atom p. Since p (or any
propositional expression) can only have one of two values, we can fully define the meaning
of negation by specifying what it does to the value of p in these two cases. We do that with
the aid of the following truth table.

p ¬p
T F
F T

What the truth table tells us is that if we negate T we get F and if we negate F we get
T .

Negation is the only unary propositional operator we are going to consider. Next we
consider binary (2-argument) propositional operators, starting with conjunction, ∧. The
conjunction (and) of p and q is denoted p∧q and its meaning is given by the following truth
table. 1

1Many presentations of propositional logic use the term connective instead of operator. The use of
”connective” is wide-spread and we also occassionally it in lieu of operator. Using it for binary operators is
reasonable, but its use for unary operators (¬) is misleading, since it is not connecting expressions.
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p q p ∧ q
T T T
T F F
F T F
F F F

Each row in a truth table corresponds to an assignment, one possible way of assigning
values (T or F ) to the atoms of a formula. The truth table allows us to explore all relevant
assignments. If we have two atoms, there are 4 possibilities, but in general, if we have n
atoms, there are 2n possible assignments we have to consider.

In one sense, that’s all there is to propositional logic, because every other operator we
are going to consider can be expressed in terms of ¬ and ∧, and almost every question we
are going to consider can be answered by the construction of a truth table.

Next, we consider disjunction. The disjunction (or) of p and q is denoted p ∨ q and its
meaning is given by the following truth table.

p q p ∨ q
T T T
T F T
F T T
F F F

In English usage, “p or q” often means p or q, but not both. Consider the mother who
tells her child:

You can have ice cream or a cookie.

The child is correct in assuming this means that she can have ice cream or a cookie, but not
both.

As you can see from the truth table for disjunction, in logic “or” always means at least
one.

We can write more complex formulas by using several operators. An example is ¬p∨¬q,
where we use the convention that ¬ binds more tightly than any other operator, hence we
can only parse the formula as (¬p)∨(¬q). We can construct truth tables for such expressions
quite easily. First, determine how many distinct atoms there are. In this case there are two;
that means we have four rows in our truth table. Next we create a column for each atom
and for each operator. Finally, we fill in the truth table, using the truth tables that specify
the meaning of the operators.

p q ¬p ¬q ¬p ∨ ¬q
T T F F F
T F F T T
F T T F T
F F T T T

Next, we consider implication, ⇒. This is called logical (or material) implication. In
p⇒ q, p is the antecedent and q is the consequent. Implication is often confusing to students
because the way it is used in English is quite complicated and subtle. For example, consider
the following sentences.
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If Obama invented the Internet, then the inhabitants of Boston are all dragons.

Is it true?
What about the following?

If Obama was elected president, then the inhabitants of Tokyo are all descendants
of Godzilla.

Logically, only the first is true, but most English speakers will say that if there is no
connection between the antecedent and consequent, then the implication is false.

Why is the first logically true? Because here is the truth table for implication.

p q p⇒ q
T T T
T F F
F T T
F F T

Here are two ways of remembering this truth table. First, p⇒ q is equivalent to ¬p∨ q.
Second, p ⇒ q is false only when p is T , but q is F . This is because you should think of
p⇒ q as claiming that if p holds, so does q. That claim is true when p is F . The claim can
only be invalidated if p holds, but q does not.

As a final example of the difference between logical implication (whose meaning is given
by the above truth table) and implication as commonly used, consider a father telling his
child:

If you behave, I’ll get you ice cream.

The child rightly expects to get ice cream if she behaves, but also expects to not get ice
cream if she doesn’t: there is an implied threat here.

The point is that the English language is subtle and open for interpretation. In order to
avoid misunderstandings, mathematical fields, such as Computer Science, tend to use what
is often called “mathematical English,” a very constrained version of English, where the
meaning of all operators is clear.

Above we said that p ⇒ q is equivalent to ¬p ∨ q. This is the first indication that we
can often reduce propositional expressions to simpler forms. If by simpler we mean less
operators, then which of the above is simpler?

Can we express the equivalence in propositional logic? Yes, using equality of Booleans,
≡, as follows (p⇒ q) ≡ (¬p ∨ q).

Here is the truth table for ≡.

p q p ≡ q
T T T
T F F
F T F
F F T

How would you simplify the following?

1. p ∧ ¬p
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2. p ∨ ¬p

3. p ≡ p

Here is one way.

1. (p ∧ ¬p) ≡ false

2. (p ∨ ¬p) ≡ true

3. (p ≡ p) ≡ true

The final binary operator we will consider is ⊕, xor. There are two ways to think about
xor. First, note that xor is exclusive or, meaning that exactly one of its arguments is true.
Second, note that xor is just the Boolean version of “not equal.” Here is the truth table for
⊕.

p q p⊕ q
T T F
T F T
F T T
F F F

To avoid using too many parentheses, from now on we will follow the convention: ¬
binds tightest, followed by {∧,∨}, followed by ⇒, followed by {⊕,≡}. Hence, instead of

((p ∨ (¬q)) ⇒ r) ⊕ ((¬r) ⇒ (q ∧ (¬p)))

we can write
p ∨ ¬q ⇒ r ⊕ ¬r ⇒ q ∧ ¬p

We will also consider a ternary operator, i.e., an operator with three arguments. The
operator is ite, which stands for “if-then-else,” and means just that: if the first argument
holds, return the second (the then branch), else return the third (the else branch). Since
there are three arguments, there are eight rows in the truth table.

p q r ite(p, q, r)
T T T T
T T F T
T F T F
T F F F
F T T T
F T F F
F F T T
F F F F

Here are some very useful ways of characterizing propositional formulas. Start by con-
structing a truth table for the formula and look at the column of values obtained. We say
that the formula is:

� satisfiable if there is at least one T
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� unsatisfiable if it is not satisfiable, i.e., all entries are F

� falsifiable if there is at least one F

� valid if it is not falsifiable, i.e., all entries are T

We have seen examples of all of the above. For example, p ∧ q is satisfiable, since the
assignment that makes p and q both T results in p ∧ q also being T . This example is also
falsifiable, as evidenced by the assignment that makes p F and q T . An example of an
unsatisfiable formula is p ∧ ¬p. If you construct the truth table for it, you will notice that
every assignment makes it F (so it is falsifiable too). Finally, an example of a valid formula
is p ∨ ¬p.

Notice that if a formula is valid, then it is also satisfiable. In addition, if a formula is
unsatisfiable, then it is also falsifiable.

Validity turns out to be really important. A valid formula, often also called a theorem,
corresponds to a correct logical argument, an argument that is true regardless of the values
of its atoms. For example p⇒ p is valid. No matter what p is, p⇒ p always holds.

3.1 P = NP

A natural question arises at this point: Is there an algorithm that given a propositional
logic formula returns “yes” if it is satisfiable and “no” otherwise?

Here is an algorithm: construct the truth table. If we have the truth table, we can easily
decide satisfiability, validity, unsatisfiability, and falsifiability.

The problem is that the algorithm is inefficient. The number of rows in the truth table
is 2n, where n is the number of atoms in our formula.

Can we do better? For example, recall that we had an inefficient recursive algorithm for
sum-n (the function that given a natural number n, returns

∑n

i=0 i). The function required
n additions, which is exponential in the number of bits needed to represent n (logn bits are
needed). However, with a little math, we found an algorithm that was efficient because it
only needed 3 arithmetic operations.

Is there an efficient algorithm for determining Boolean satisfiability? By efficient, we
mean an algorithm that in the worst case runs in polynomial time. Gödel asked this question
in a letter he wrote to von Neumann in 1956. No one knows the answer, although this is
one of the most studied questions in computer science. In fact, most of the people who
have thought about this problem believe that no polynomial time algorithm for Boolean
satisfiability exists.

3.2 The Power of Xor

Let us take a short detour, I’ll call “the power of xor.”
Suppose that you work for a secret government agency and you want to communicate

with your counterparts in Europe. You want the ability to send messages to each other
using the Internet, but you know that other spy agencies are going to be able to read the
messages as they travel from here to Europe.

How do you solve the problem?
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Well, one way is to have a shared secret: a long sequence of F ’s and T ’s (0’s and 1’s if
you prefer), in say a code book that only you and your counterparts have. Now, all messages
are really just sequences of bits, which we can think of as sequences of F ’s and T ’s, so you
take your original message m and xor it, bit by bit, with your secret s. That gives rise to
coded message c, where c ≡ m⊕ s. Notice that here we are applying ≡ and ⊕ to sequences
of Boolean values, often called bit-vectors.

Anyone can read c, but they will have no idea what the original message was, since s
effectively scrambled it. In fact, with no knowledge of s, an eavesdropper can extract no
information about the contents of m from c, except for the length of the message, which
can be partially hidden by padding the message with extra bits.

But, how will your counterparts in Europe decode the message? Notice that some
propositional reasoning shows that m = c ⊕ s, so armed with your shared secret, they can
determine what the message is.

This is one of the most basic encryption methods. It provides extremely strong security
but is difficult to use because it requires sharing a secret. While sharing a key might be
feasible for government agencies, it is not feasible for you and all the companies you buy
things from on the Internet.

The shared secret should be a random sequence of bits and once bits of the secret key
are used, they should never be used again. Why? This method is called the one-time pad
method.

Exercise 3.1 Show that this scheme is secure. Here’s how. Show that for any coded mes-
sage c of length l, if an adversary only knows c (but not m and not s), then for any m (of
length l), there exists a secret s (of length l) such that c = m⊕ s.

Exercise 3.2 If s, the secret key, is not a random sequence, why is this a bad idea? For
example, what if s is all 0’s or all 1’s?

Exercise 3.3 If you keep reusing s, the secret key, why is this a bad idea?

Is this a reasonable way to exchange information? Well you have probably seen movies
with the “red telephone” that connects the Pentagon with the Kremlin. While a red tele-
phone was never actually used, there was a system in place to allow Washington to directly
and securely communicate with Moscow. The original system used encrypted teletype mes-
sages based on one-time pads. The countries exchanged keys at their embassies.

3.3 Useful Equalities

Here are some simple equalities involving the constant true. We will refer to rules that
simplify formulas that have a constant in them as constant propagation.

1. p ∨ true ≡ true

2. p ∧ true ≡ p

3. p⇒ true ≡ true

4. true ⇒ p ≡ p

5. (p ≡ true) ≡ p
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6. (p⊕ true) ≡ ¬p

Here are some simple equalities involving the constant false .

7. p ∨ false ≡ p

8. p ∧ false ≡ false

9. p⇒ false ≡ ¬p

10. false ⇒ p ≡ true

11. (p ≡ false) ≡ ¬p

12. (p⊕ false) ≡ p

Why do we have separate entries for p ⇒ false and false ⇒ p, above, but not for both
p ∨ false and false ∨ p? Because ∨ is commutative. Here are some equalities involving
commutativity.

13. p ∨ q ≡ q ∨ p

14. p ∧ q ≡ q ∧ p

15. (p ≡ q) ≡ (q ≡ p)

16. (p⊕ q) ≡ (q ⊕ p)

What about ⇒. Is it commutative? Is p ⇒ q ≡ q ⇒ p valid? No. By the way, the
right-hand side of the previous equality is called the converse: it is obtained by swapping
the antecedent and consequent.

A related notion is the inverse. The inverse of p⇒ q is ¬p⇒ ¬q. Note that the inverse
and converse of an implication are equivalent.

Even though a conditional is not equivalent to its inverse, it is equivalent to its contra-
positive:

17. p⇒ q ≡ ¬q ⇒ ¬p

The contrapositive is obtained by negating the antecedent and consequent and then
swapping them.

While we’re discussing implication, a very useful equality involving implication is:

18. p⇒ q ≡ ¬p ∨ q

Also, it is sometimes useful to replace ≡ by ⇒, which is possible due to the following
equality:

19. (p ≡ q) ≡ (p⇒ q) ∧ (q ⇒ p)

The above equality allows us to prove a propositional equality by proving two implications.
Dijkstra called this a ping-pong proof; where the forward direction (p⇒ q) is ping and the
other direction (q ⇒ p) is pong.

We will use the following implication all the time when reasoning about programs. This
validity is called Modus Ponens.
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20. (p⇒ q) ∧ p⇒ q

Equalities are often more useful than implications, e.g., they are easier to use in equa-
tional proofs, proofs consisting of a sequence of equalities. Equational proofs will turn out
to be really important! We can turn Modus Ponens into the following equality.

21. (p⇒ q) ∧ p ≡ p ∧ q

Here are more equalities.

22. ¬¬p ≡ p

23. ¬true ≡ false

24. ¬false ≡ true

25. p ∧ p ≡ p

26. p ∨ p ≡ p

27. p⇒ p ≡ true

28. (p ≡ p) ≡ true

29. (p⊕ p) ≡ false

30. p ∧ ¬p ≡ false

31. p ∨ ¬p ≡ true

32. p⇒ ¬p ≡ ¬p

33. ¬p⇒ p ≡ p

34. p ≡ ¬p ≡ false

35. p⊕ ¬p ≡ true

Here’s one set of equalities you have probably already seen: DeMorgan’s Laws.

36. ¬(p ∧ q) ≡ ¬p ∨ ¬q

37. ¬(p ∨ q) ≡ ¬p ∧ ¬q

What if we negate other connectives? The following equalities address that.

38. ¬(p⇒ q) ≡ p ∧ ¬q

39. ¬(p ≡ q) ≡ (p⊕ q)

40. ¬(p⊕ q) ≡ (p ≡ q)

Another fundamental property is associativity:

41. ((p ∨ q) ∨ r) ≡ (p ∨ (q ∨ r))

42. ((p ∧ q) ∧ r) ≡ (p ∧ (q ∧ r))
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43. ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))

44. ((p⊕ q)⊕ r) ≡ (p⊕ (q ⊕ r))

Since ≡ is associative and commutative, we do not need to use parentheses to disam-
biguate a sequence of ≡’s. In fact, we can permute the arguments any way that we want
to. Convince yourself that this is really the case. This result applies to any associative and
commutative operator, including addition, e.g., a+ b + c+ d = c+ a+ d+ b and similarly
p ∨ q ∨ r ∨ s ≡ r ∨ p ∨ s ∨ q.

An important property is distributivity:

45. p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

46. p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

Another important property is transitivity:

47. (p⇒ q) ∧ (q ⇒ r) ⇒ (p⇒ r)

48. (p ≡ q) ∧ (q ≡ r) ⇒ (p ≡ r)

Here are some equalities involving ≡ and ⊕:

49. (p⊕ q) ∧ (q ⊕ r) ⇒ (p ≡ r)

50. (p ≡ q) ≡ (p ∧ q) ∨ (¬p ∧ ¬q)

51. (p ≡ q) ≡ (p ∨ ¬q) ∧ (¬p ∨ q)

52. (p⊕ q) ≡ (p ∧ ¬q) ∨ (¬p ∧ q)

53. (p⊕ q) ≡ (p ∨ q) ∧ (¬p ∨ ¬q)

Make sure that not only you remember these equalities, but that you understand and
can explain why they hold. Get into the habit of reading such formulas the way you would
read text or programs. For example equation 49 states that if p differs from q (p⊕ q) and q
differs from r (q ⊕ r), then p must be equal to r (p ≡ r).

We have the following redundancy laws :

54. (p ∨ q) ∧ (p ∨ ¬q) ≡ p

55. (p ∧ q) ∨ (p ∧ ¬q) ≡ p

56. p ∧ (¬p ∨ q) ≡ p ∧ q

57. p ∨ (¬p ∧ q) ≡ p ∨ q

Notice that equation 56 is equivalent to the equational version of Modus Ponens (equa-
tion 21).

We also have the related absorption laws :

58. p ∧ (p ∨ q) ≡ p

59. p ∨ (p ∧ q) ≡ p
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Let’s consider absorption more carefully. Here is a simple calculation, an equational
proof:
Proof

p ∧ (p ∨ q)

≡ { Distribute ∧ over ∨ }

(p ∧ p) ∨ (p ∧ q)

≡ { (p ∧ p) ≡ p }

p ∨ (p ∧ q) �

The above proof shows that p ∧ (p ∨ q) ≡ p ∨ (p ∧ q), so if we show that p ∧ (p ∨ q) ≡ p,
we will have also shown that p ∨ (p ∧ q) ≡ p.

A very useful equality is based on the Shannon expansion of a formula: if f is a formula
and p is an atom, then we have:

60. f ≡ (p ∧ f |((p true))) ∨ (¬p ∧ f |((p false)))

By f |((p x)) we mean, substitute x for atom p in f . Substitution has a higher binding power
than all propositional connectives. For example, g ∨ f |((p x)) means g ∨ (f |((p x))), and not
(g ∨ f)|((p x)). The right-hand side of the equality above is the Shannon expansion of f .

We now define substitution.
A substitution, a list of the form:

((atom1 formula1) · · · (atomn formulan)),

where the atoms are “target atoms” and the formulas are their images. The application of
this substitution to a formula uniformly replaces every occurrence of a target atom by its
image.

Here is an example of applying a substitution. (a∨¬(a∧ b))|((a (p∨ q)) (b a)) = ((p∨ q)∨
¬((p ∨ q) ∧ a)).

Let us apply Shannon decomposition to the formula above.
Proof

p ∨ (p ∧ q)

≡ { Shannon expansion using p }

(p ∧ (true ∨ (true ∧ q))) ∨ (¬p ∧ (false ∨ (false ∧ q)))

≡ { Constant propagation }

(p ∧ true) ∨ (¬p ∧ false)

≡ { Constant propagation }

p ∨ false

≡ { Constant propagation }

p �

We showed the constant propagation steps in detail, but typically, we would just have
one step that does all the constant propagation.

In general, Shannon expansion can double the size of formulas, but there are some special
cases that always provide a win. These equalities are very useful for simplifying expressions.
Make sure to remember them. If f is a formula, then we have:

61. p ∧ f ≡ p ∧ f |((p true))
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62. ¬p ∧ f ≡ ¬p ∧ f |((p false))

63. p ∨ f ≡ p ∨ f |((p false))

64. ¬p ∨ f ≡ ¬p ∨ f |((p true))

We can combine the above equalities to derive new ones. For example, if f, g are formulas,
then we have:

65. p⇒ f ≡ p⇒ f |((p true))

66. f ⇒ p ≡ f |((p false)) ⇒ p

67. p ∧ f ⇒ g ≡ p ∧ f |((p true)) ⇒ g|((p true))

We will have to manipulate formulas containing nested implications and the following
two equalities will be very useful. The first is exportation:

68. p⇒ (q ⇒ r) ≡ p ∧ q ⇒ r

The second is negate and swap:

69. p ∧ q ⇒ r ≡ p ∧ ¬r ⇒ ¬q

If we have a formula of the form p1 ∧ · · · ∧ pn ⇒ r, we can negate and swap any pi with r.

3.4 Proof Techniques

Let’s try to show that p ∧ (p ∨ q) ≡ p. We will do this using a proof technique called case
analysis. Notice the similarity between case analysis and Shannon expansion.

Case Analysis (simple version): If f is a formula and p is an atom, then f is valid
iff both f |((p true)) and f |((p false)) are valid. The next validity can be used to justify case
analysis.

70. (p⇒ q) ∧ (¬p ⇒ q) ≡ q

Notice that the above equality is just a restatement of one of the redundancy equalities.
Here is the promised proof.

Proof
p ∧ (p ∨ q) ≡ p

≡ { case analysis }

true ∧ (true ∨ q) ≡ true and false ∧ (false ∨ q) ≡ false

≡ { Basic Boolean equalities }

true ≡ true and false ≡ false

≡ { Basic Boolean equalities }

true �

We can generalize the proof technique as follows.
Case Analysis (general version): If f is a formula and g1, . . . , gn are formulas such

that g1 ∨ · · · ∨ gn is valid, then f is valid iff all of (g1 ⇒ f), . . . , (gn ⇒ f) are valid.
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The intuition is that we are proving that f holds by considering the cases g1, . . . , gn and
since the cases are exhaustive (g1 ∨ · · · ∨ gn ≡ true), f always holds. Notice that when
g1 = p, g2 = ¬p, then this is equivalent to the simple version of case analysis.

Another useful proof technique is instantiation.
Instantiation: If f is a valid formula, then so is f |σ, where σ is a substitution.
Here is an application of instantiation. a ∨ ¬a is valid, so therefore, so is

(a ∨ ¬a)|((a (p∨ (q ∧ r)))) = (p ∨ (q ∧ r)) ∨ ¬(p ∨ (q ∧ r)).

A very important skill is learning to see a formula at different levels of abstraction and
it is sometimes useful to take a complex formula, such as

(p ∨ (q ∧ r)) ∨ ¬(p ∨ (q ∧ r))

and view it as a special case of the more abstract formula

a ∨ ¬a

This allows us to apply instatiation.
All of the Boolean logic proof techniques are applicable to reasoning about more expres-

sive logics. In the next few chapters, we will see how to use these proof techniques to reason
about programs. As a simple example, we can prove that the following is valid.

(or (== x y) (! (== x y)))

The proof is just instantiation of the propositional equality

p ∨ ¬p

using the substitution ((p (== x y))). Notice that (== x y) is not a propositional for-
mula, but it is a Boolean-valued expression. Given any ACL2s expression, we can extract a
propositional skeleton (or Boolean skeleton) and can reason about that using propositional
logic. Here is another example. A propositional skeleton of

(=> (and (rationalp x) (rationalp y)) (= (+ x y) (+ y x)))

is
p ∧ q ⇒ r.

Given an ACL2s formula, say φ, we say that a Boolean formula f is a propositional abstrac-
tion (or Boolean abstraction) of φ if there is a substitution, σ such that f |σ = φ. If f is
a Boolean abstraction of φ and there is no formula g with more propositional connectives
that is also a Boolean abstraction of φ, we say that f is a propositional skeleton of φ. For
example, the following formulas are Boolean abstractions of the above ACL2s formula, as
the corresponding substitutions show.

p, ((p (=> (and (rationalp x) (rationalp y)) (= (+ x y) (+ y x)))))

p⇒ q, ((p (and (rationalp x) (rationalp y))) (q (= (+ x y) (+ y x))))

r ∧ p⇒ q, ((r (rationalp x)) (p (rationalp y)) (q (= (+ x y) (+ y x))))

Only the last formula is a propositional skeleton because there is no further propositional
structure to extract. We note that the definition of a substitution in the context of ACL2s
formulas includes some subtleties that will be discussed in Chapter 4.
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3.5 Decision Procedures

A problem that has a “yes” or “no” answer is a decision problem. Here are some examples
of decision problems.

1. Determining if an ACL2s object is an integer.

2. Determining if an ACL2s list of rational numbers is ordered.

3. Determining if a propositional formula is valid.

4. Determining if an ACL2s program terminates on all legal inputs.

A decision procedure is an algorithm that solves a decision problem. The algorithm
has to terminate and it has to correctly solve the decision problem. If there is a decision
procedure for a decision problem, then we say that the problem is decidable. Here are some
examples.

1. integerp is a decision procedure for the decision problem of determining if an ACL2s
object is an integer.

2. The decision problem of determining if an ACL2s list of rational numbers is ordered
is decidable. To see this, note that an ACL2s function that checks this is a problem
decision procedure for this decision problem.

3. There is a decision procedure for propositional validity.

4. There is no decision procedure for the decision problem of determining if an ACL2s
program terminates on all legal inputs. How one goes about proving such undecidabil-
ity results is an interesting, fundamental question that we will discuss in Chapter 5.

Let us consider decision problems and decision procedures in the context of propositional
logic. The characterizations of formulas previously introduced are all decidable, as the
exercises below ask you to show.

Exercise 3.4 Write a decision procedure for propositional validity in ACL2s.

Exercise 3.5 Write a decision procedure for propositional satisfiability in ACL2s.

Exercise 3.6 Write a decision procedure for propositional falsifiability in ACL2s.

Exercise 3.7 Write a decision procedure for propositional unsatisfiability in ACL2s.

Let’s say we have a decision procedure for one of these four characterizations. Then, we
can, rather trivially, get a decision procedure for any of the other characterizations.

Why?
Well, consider the following.
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Proof
Unsat f

≡ { By the definition of sat, unsat }

not (Sat f)

≡ { By definition of Sat, Valid }

Valid ¬f

≡ { By definition of valid, falsifiable }

not (Falsifiable ¬f) �

How do we use these equalities to obtain a decision procedure for either of unsat, sat,
valid, falsifiable, given a decision procedure for the other?

Well, let’s consider an example. Say we want a decision procedure for validity given a
decision procedure for satisfiability.

Valid f

≡ { not (Sat f) ≡ Valid¬f , by above }

not (Sat ¬f)

What justifies this step? Propositional reasoning and instantiation.
Let p denote “(Sat f)” and q denote “(Valid ¬f).” The above equations tell us ¬p ≡ q,

so p ≡ ¬q.
If more explanation is required, note that (¬p ≡ q) ≡ (p ≡ ¬q) is valid. That is, you can

transfer the negation of one argument of an equality to the other.
Make sure you can do this for all 12 combinations of starting with a decision proce-

dure for sat, unsat, valid, falsifiable, and finding decision procedures for the other three
characterizations.

There are two interesting things to notice here.
First, we took advantage of the following equality:

(¬p ≡ q) ≡ (p ≡ ¬q)

There are lots of equalities like this that you should know about, so study the provided
list until you have internalized all the equalities.

Second, we saw that it was useful to extract the propositional skeleton from an argument.
We’ll look at examples of doing that. Initially this will involve word problems, but later it
will involve reasoning about programs.

Often we want more than a “yes” or “no” answer. For example, when a formula is not
valid, it is falsifiable, so there exists an assignment that makes it false. Such an assignment is
often called a counterexample and can be very useful for debugging purposes. Since ACL2s
is a programming language, we can use it to write a decision procedure for propositional
validity, as the exercises above ask you to do. In addition, we can also use it to write an
algorithm that provides counterexamples when formulas are not valid.

Exercise 3.8 Write an ACL2s program that determines the validity of propositional for-
mulas and provides counterexamples when formulas are not valid.

Exercise 3.9 Write an ACL2s program that determines the satisfiability of propositional
formulas and provide satisfying assignments when formulas are satisfiable.
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Exercise 3.10 Write an ACL2s program that determines the unsatisfiability of proposi-
tional formulas and provides satisfying assignments when formulas are not unsatisfiable.

Exercise 3.11 Write an ACL2s program that determines the falsifiability of propositional
formulas and provides falsifying assignments when formulas are falsifiable.

Counterexamples can also be thought of as certificates. For example, a counterexample
to validity is a certificate of falsifiability that can be checked by evaluation. The careful
reader will have noticed that the above exercises only ask for certificates of satisfiability
and falsifiability. It is clear that certificates that can be checked efficiently exist for showing
satisfiability and falsifiability, because the size of the certificate is equal to the number of
variables in the formula (so they are polynomial in the size of the formula) and checking
the certificate can be done using evaluation (which can be done in polynomial time).

What about certificates for validity and unsatisfiability? This is an interesting question
that is related to the P = NP question, e.g., if P = NP then this implies that there are
certificates that can be checked efficiently (in polynomial time). We currently do not know
of any efficiently-checkable certificates for validity and unsatisfiability. Do any kinds of
certificates exists? Yes; a proof of validity is a certificate, but such proofs may be very long,
i.e., no one has yet proved a theorem stating that proofs are always polynomial in size and
no has yet proved that efficiently-checkable certificates for validity do not exist. If you want
to know more, research the co-NP complexity class.

3.6 Normal Forms and Complete Boolean Bases

We have seen several propositional operators, but do we have any assurance that the oper-
ators are complete? By complete we mean that the propositional operators we have can be
used to represent any Boolean function.

How do we prove completeness?
Consider some arbitrary Boolean function f over the atoms x1, . . . , xn. The domain of

f has 2n elements, so we can represent the function using a truth table with 2n rows. Now
the question becomes: can we represent this truth table using the operators we already
introduced?

Here is the idea of how we can do that. Take the disjunction of all the assignments that
make f true. The assignments that make f true are just the rows in the truth table for which
f is T . Each such assignment can be represented by a conjunctive clause, a conjunction of
literals, atoms or their negations. So, we can represent each of these assignments. Now to
represent the function, we just take the disjunction of all the conjunctive clauses.

Consider what happens if we try to represent a⊕b in this way. There are two assignments
that make a ⊕ b true and they can be represented by the conjunctive clauses a ∧ ¬b and
¬a ∧ b, so a ⊕ b can be represented as the disjunction of these two conjunctive clauses:
(a ∧ ¬b) ∨ (¬a ∧ b).

Notice that we only need ¬,∨, and ∧ to represent any Boolean function!
The formula we created above was a disjunction of conjunctive clauses. Formulas of this

type are said to be in disjunctive normal form (DNF). If each conjunctive clause includes
all the atoms in the formula, then we say that the formula is in full disjunctive normal
form. Another type of normal form is conjunctive normal form (CNF): each formula is
a conjunction of disjunctive clauses, where a disjunctive clause is a disjunction of literals.
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Disjunctive clauses are also just called clauses. If each clause includes all the atoms in the
formula, then we say that the formula is in full conjunctive normal form.

Exercise 3.12 Come up with a way of representing an arbitrary Boolean function using
full CNF. (Hint: Consider how we did this with full DNF.)

Any formula can be put in DNF or CNF. In fact, the input format for modern SAT
solvers is CNF, so if you want to check the satisfiability of a Boolean formula using a SAT
solver, you have to transform the formula so that it is in CNF.

Exercise 3.13 You are given a Boolean formula and your job is to put it in CNF and DNF.
How efficiently can this be done?

Hint: Consider formulas of the form

(x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xn ∧ yn)

(x1 ∨ y1) ∧ (x2 ∨ y2) ∧ · · · ∧ (xn ∨ yn)

Back to completeness. We saw that these three operators are already complete: ¬,∨,∧.
Can we do better? Can we get rid of some of them?

We can do better because ∨ can be represented using only ∧,¬. Similarly ∧ can be
represented using only ∨,¬. How?

Exercise 3.14 Can we do better yet? No. ¬ is not complete; neither is ∧; neither is ∨.
Prove it.

Next, think about this claim: you can represent all the Boolean operators using just ite
(and the constants false, true). If we can represent ¬ and ∨, then as the previous discussion
shows, we’re done.

¬p ≡ ite(p, false, true)

p ∨ q ≡ ite(p, p, q)

Exercise 3.15 Represent the rest of the operators using ite.

Exercise 3.16 There are 16 binary Boolean operators. Are any of them complete? If so,
exhibit such an operator and prove that it is complete. If not, prove that none of the operators
is complete.

We now consider two rules of inference that have a long, storied history.
The first rule of inference is consensus. Let C,D be conjunctive clauses and let f =

(p ∧C) ∨ (¬p ∧D) ∨ g. Then we have:

71. f = f ∨ (C ∧D), i.e., C ∧D ⇒ f

Notice that C ∧ D is a conjunctive clause and we say it is the consensus of conjunctive
clauses (p ∧ C) and (¬p ∧D).

The second rule of inference is resolution. Let C,D be clauses and let f = (p ∨ C) ∧
(¬p ∨D) ∧ g. Then we have:

72. f = f ∧ (C ∨D), i.e., f ⇒ C ∨D

Notice that C ∨D is a clause and we say it is the resolvent of clauses (p∨C) and (¬p∨D).
Modern SAT solvers are based on resolution.
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3.7 Propositional Logic in ACL2s

This class is about logic from a computational point of view and our vehicle for exploring
computation is ACL2s. ACL2s has ite: it is just if!

Remember that ACL2s is in the business of proving theorems. Since propositional logic
is used everywhere, it would be great if we could use ACL2s to reason about propositional
logic. In fact, we can.

Consider trying to prove that a propositional formula is valid. We would do that now,
by constructing a truth table. We can also just ask ACL2s. For example, to check whether
the following is valid

(p⇒ q) ≡ (¬p ∨ q)

We can ask ACL2s the following query

(property (p q :bool)

(iff (=> p q) (or (! p) q)))

Try it in ACL2s.
In fact, if a propositional formula is valid (that is, it is a theorem) then ACL2s will

definitely prove it. We say that ACL2s includes a decision procedure for propositional
validity. We saw that ACL2s indicates that it has determined that a formula is valid with
“Q.E.D.” 2

What if you give ACL2s a formula that is not valid? Try it with an example, say:

(p⊕ q) ≡ (p ∨ q)

We can ask ACL2s the following query

(property (p q :bool)

(iff (xor p q) (or p q)))

As you can see, ACL2s also can provide counterexamples to false conjectures.

3.8 Valuations and Duality

We are often interested in the meaning of a propositional formula for a given assignment
of values to the atoms of the formula. For example, consider the formula p ⇒ q. It is
both satisfiable and falsifiable. However, if p is assigned false , then it is equivalent, under
this assignment, to true. We define a valuation to be a substitution where all images are
constants. A Boolean valuation is a valuation where all the images are Boolean constants.
We say that a v is a total valuation for f when the domain of v includes all of the variables
of f ; in the case of Boolean valuations, the variables are the atoms. We may refer to
valuations as assignments, but chose the term valuation, since it is rarer than assignment,
thereby reducing the chance of ambiguity. 3

If f is a Boolean formula, v is a valuation and f |v is equal to a constant, we say that v
is sufficient for f . Notice that if f is any Boolean formula and v is a total valuation for f ,

2Q.E.D. is abbreviation for “quod erat demonstrandum,” Latin for “that which was to be demonstrated.”
3Valuations are often presented as functions from atoms to Booleans, which has some advantages, e.g.,

in situations where one considers infinite sets of formulas. For our purposes, there is no reason to not use
the existing notion of a substitution.
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then v is sufficient for f , i.e., f |v is equal to either true or false. In fact, even if v is not a
total valuation, we may be able to efficiently reduce f |v to a constant using just constant
propagation, e.g., consider f = p ⇒ q and v = ((p false)). A valuation v is minimal for
f if it is sufficient for f , but no sublist of v is sufficient for f . If f is either a tautology
or unsatisfiable, then the empty valuation is sufficient and minimal for f , as we can reduce
f to a constant by paying the computational cost of using a decision procedure. Given a
valuation v, we define v, the negation of v, to be the valuation obtained by negating images,
e.g., if v = ((p false) (q true)), then v = ((p true) (q false)). When we say that a valuation v
is total, sufficient or minimal for a set of formulas, we mean that it includes all the variables
in the set, that under the valuation all of the formulas can be reduced to a constant or that
the valuation is sufficient, but for any sublist there is at least one formula that cannot be
reduced to a constant.

We now introduce duality, a very useful concept that is applicable in many parts of
Mathematics. We consider only the propositional logic version. Given a formula f , we
have seen that we can convert it to an equivalent formula consisting only of the operators
{¬,∧,∨}; more generally we can use any complete Boolean base. Hence, for the remainder
of this section we assume that formulas only contain these operators. If f is function, then
its dual, f̂ , is obtained by replacing every occurrence of false, true,∨,∧ with true, false,∧,∨,
respectively. For example, the dual of (p ∧ true) ∨ (q ∨ false) is (p ∨ false) ∧ (q ∧ true).

Results involving duality and valuations are given as exercises. Reviewing instantiation
will be helpful.

Exercise 3.17 Prove that
ˆ̂
f (the dual of the dual of f) is syntactically equal to f .

Exercise 3.18 Prove that f = g iff for all total valuations of f and g, v, we have f |v = g|v.

Exercise 3.19 Prove that f = g iff for all minimal valuations of f and g, v, we have
f |v = g|v.

Exercise 3.20 Let v be a total valuation for f . Prove that f̂ |v = ¬f |v.

Exercise 3.21 Let v be a sufficient valuation for f . Prove that v is a sufficient valuation
for f̂ .

Exercise 3.22 Let v be a minimal valuation for f . Prove that v is a minimal valuation for
f̂ .

Exercise 3.23 Let v be a sufficient valuation for f . Prove that f̂ |v = ¬f |v.

3.9 Connections to Set Theory

Set theory provides the foundations of mathematics. In this section, we will establish con-
nections between Boolean (or propositional) logic and set theory. We will define a Boolean
algebra of a non-empty set X to be a non-empty subset of the powerset of X closed under
union, intersection and complementation (with respect to X).

We consider some examples. Let U be the ACL2s universe. Then B = {∅, U} is the
smallest Boolean algebra of U . The largest Boolean algebra of U is the powerset of U ,
denoted 2U .
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In a Boolean algebra of X , false and true evaluate to ∅ and X and atoms correspond to
elements of the algebra, i.e., to subsets of X . Boolean algebras have the same operators as
Boolean logic, with the following meaning. The Boolean operators ∨, ∧ and ¬ correspond,
respectively, to the set theory operators ∪ (union), ∩ (intersection) and ¬ (complementation
relative to X). This is why Boolean algebras are required to be closed under union, inter-
section and complementation. Notice that the two-element Boolean algebra B is isomorphic
to propositional logic, where ∅ corresponds to F and U corresponds to T . More generally,
the smallest Boolean algebra of any non-empty set X will be isomorphic to propositional
logic in the sense above.

Let us consider the Boolean algebra 2U , whose elements are all the subsets of U , the
ACL2s universe. Suppose that p and q are defined as follows.

p = {x ∈ U : (integerp x)}

q = {x ∈ U : (neg-rationalp x)}

r = {x ∈ U : (rationalp x)}

Then we have the following.

p ∧ q = {x ∈ U : (negp x)}

p ∧ ¬q = ∅

¬p ∨ r = U

A (Boolean algebra) formula is valid iff it is equal to U . Thus, p ∨ ¬p is valid in the
Boolean algebra 2U . A very interesting result is that the set of valid equalities of Boolean
logic, some of which we presented in this chapter, is exactly equal to the set of valid equalities
of Boolean algebra. This result (which we will not prove) can be useful when you are thinking
about Boolean formulas. For example, consider the following absorption law (equation 58).

p ∧ (p ∨ q) ≡ p

The above is valid iff the following set-theoretic formula is valid in 2U (or any Boolean
algebra).

p ∩ (p ∪ q) = p

Many find the set-theoretic version to be simpler to understand, which is probably due to
the ubiquity of set theory.

The careful reader may wonder why we were able to replace ≡ in equation 58 with =
in the corresponding set-theoretic formula. Since {∨,∧,¬} is a complete Boolean base, we
can define set-theoretic versions of all the other operators. For example, we can define ⇒
and ≡ using equations 18 and 19, respectively.

p⇒ q is defined to be ¬p ∨ q

p ≡ q is defined to be (p⇒ q) ∧ (q ⇒ p)

Given the above, notice that the Boolean algebra formula p ≡ q is valid iff the corresponding
set-theoretic formula, p = q, holds.

Is the following formula valid?

¬(p ∨ q) ∨ r ≡ (¬p ∨ r) ∧ (¬q ∨ r)
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This is equivalent to whether the following set theory formula is valid.

¬(p ∪ q) ∪ r = (¬p ∪ r) ∩ (¬q ∪ r)

The validity of the above set theory formula can be decided using Venn diagrams.
Is the following formula valid?

p ∧ q ⇒ p ∨ q

This is equivalent to whether the following set theory formula is valid.

(p ∩ q) ⊆ (p ∪ q)

We are using the observation that the Boolean algebra formula p ⇒ q is valid iff the set-
theoretic formula p ⊆ q holds. We can once again use Venn diagrams to determine the
validity of the above set theory formula.

Exercise 3.24 Define a set-theoretic version of ⊕.

Exercise 3.25 Check that all of the Boolean logic equalities in this chapter also hold for
Boolean algebras, using the definitions above and from Exercise 3.24.

Exercise 3.26 Prove that the Boolean algebra formula p ≡ q is valid iff the set-theoretic
formula, p = q, holds.

Exercise 3.27 Prove that the Boolean algebra formula p ⇒ q is valid iff the set-theoretic
formula p ⊆ q holds.

We have only scratched the surface. Boolean algebra can be futher generalized and that
leads, among other things, to lattice theory. The interested reader is invited to explore this
topic further.

3.10 Word Problems

Next, we consider how to formalize word problems using propositional logic.
Consider formalizing and analyzing the following.

Tom likes Jane if and only if Jane likes Tom. Jane likes Bill. Therefore, Tom
does not like Jane.

Here’s the kind of answer I expect you to give.

Let p denote “Tom likes Jane”; let q denote “Jane likes Tom”; let r denote “Jane
likes Bill.”

The first sentence can then be formalized as p ≡ q.

We denote the second sentence by r.

The third sentence contains the claim we are to analyze, which can be formalized
as ((p ≡ q) ∧ r) ⇒ ¬p.

This is not a valid claim. A truth table shows that the claim is violated by the
assignment that makes p, q, and r true. This makes sense because r (that Jane
likes Bill) does not rule out q (that “Jane likes Tom”), but q requires p (that
“Tom likes Jane”).
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Consider another example.

A grade will be given if and only if the test is taken. The test has been taken.
Was a grade given?

Anything of the form “a iff b” is formalized as a ≡ b. The problem now becomes easy to
analyze.

John is going to the party if Mary goes. Mary is not going. Therefore, John
isn’t going either.

How do we formalize “a if b”? Simple: b⇒ a. Finish the analysis.

John is going to the party only if Mary goes. Mary is not going. Therefore, John
isn’t going either.

How do we formalize “only if”? A simple way to remember this is that “if” is one
direction of “if and only if” and “only if” is the other direction. Thus, “a only if b” is
formalized as a⇒ b.

Try this one.

John is going to the party only if Mary goes. Mary is going. Therefore, John is
going too.

One more.

Paul is not going to sleep unless he finishes the carrot hunt on Final Fantasy
XII. Paul went to sleep. Therefore, he finished the carrot hunt on Final Fantasy
XII.

How do we formalize “a unless b”? It is ¬b ⇒ a. Why? Because “a unless b” says that
a has to be true, except when (unless) b is true, so when b is true, a can be anything. The
only assignment that violates “a unless b” is when a is false and b is false . So, notice that
“a unless b” is equivalent to “a or b”.

One more example of unless.

You will not get into NEU unless you apply.

is the same as

You will not get into NEU if you do not apply.

which is the same as

You will not get into NEU or you will apply.

So, the hard part here is formalizing the problem. After that, even ACL2s can figure
out if the argument is valid.
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3.11 The Declarative Approach to Design

Most of the design paradigms you have seen so far require you to describe how to solve
problems algorithmically. This is true for functional, applicative, and object-oriented pro-
gramming paradigms. A rather radically different approach to design is to use the declarative
paradigm. The idea is to specify what we want, not how to achieve it. A satisfiability solver
is then used to find a solution to the constraints.

3.11.1 Avionics Example

Let us consider an example from the avionics domain.
We have a set of cabinets C = {C1, C2, . . . , C20}. Cabinets are physical locations on an

airplane that provide network access, battery power, memory, CPUs, and other resources.
We also have a set of avionics applications A = {A1, A2, . . . , A500}. The avionics appli-

cations are software programs and include applications such as navigation, control, collision
detection, and collision avoidance.

Our job is to map each application to one cabinet subject to a large number of constraints.
Instead of us figuring out how to achieve this mapping, by using the declarative approach

we will instead just specify the constraints we have on the mapping and we will let the
declarative system we are using figure out a solution for us. This allows us to operate at
a much higher level of abstraction than is the case with functional, imperative, or object-
oriented approaches.

To make the idea concrete, we consider one simple example of a constraint: applications
A1, A2, and A3 have to be separated. What this means is that no pair of them can reside on
the same cabinet. Here is how we might express this constraint in the declarative language
CoBaSA. Assume that we have defined A, the array of 500 applications and C, the array of
20 cabinets.

Map AC A C

For_all cab in C {AC(1,cab) implies ((not AC(2,cab)) and (not AC(3,cab)))}

For_all cab in C {AC(2,cab) implies (not AC(3,cab))}

The first line tells us that AC is a map, a function from A to C. When we define a
map, we get access to indicator variables. Such variables are Boolean variables of the
form AC(app,cab), where AC(app,cab) = true iff AC(app) = cab, i.e., map AC applied to
application app returns cab.

3.11.2 Solving Declarative Constraints

In this section, we will get a glimpse into the process by which the three lines of CoBaSA
constraints above get turned into a formula in propositional logic that is then given to a
SAT solver.

We start by writing the constraints above using standard mathematical notation, starting
with the second constraint.

〈∀c ∈ C :: AC c
1 =⇒ ¬AC c

2 ∧ ¬AC c
3〉
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The ∀ symbol is a universal quantifier. It states that for all cabinets (c ∈ C) if application
A1 gets mapped to the cabinet (the indicator variable AC c

1) then neither application A2

nor application A3 get mapped to the same cabinet. We can actually rewrite this using
propositional logic as follows:

∧

c∈C

AC c
1 =⇒ ¬AC c

2 ∧ ¬AC c
3

So, universal quantification can be thought of as conjunction. Now, if we expand this out,
we wind up with the following:

(AC 1
1 =⇒ ¬AC 1

2 ∧ ¬AC 1
3) ∧

(AC 2
1 =⇒ ¬AC 2

2 ∧ ¬AC 2
3) ∧

. . .

(AC 20
1 =⇒ ¬AC 20

2 ∧ ¬AC 20
3 )

So, we are almost at the point where we can give this to a SAT solver. One issue, however, is
that most SAT solvers require their input to be in CNF (Conjunctive Normal Form). What
we have is a conjunction, but the conjuncts are not clauses. Here is how to turn them into
clauses. We show how to do this for the first conjunct only, since the rest follow the same
pattern. The first conjunct above gets turned into the following two clauses.

¬AC 1
1 ∨ ¬AC 1

2

¬AC 1
1 ∨ ¬AC 1

3

Notice that these two clauses are semantically equivalent to the conjunct they correspond
to.

There is one more issue to deal with before we can use a SAT solver: SAT solvers tend to
require DIMACS file format. In the DIMACS format, variables are represented by positive
integers, negated variables by negative integers, and each clause is a list of integers that
ends with a 0 and a newline. So, the first thing to do is to come up with a mapping from
indicator variables into the positive integers so that no two indicator variables get mapped
to the same number. Here is one way of doing that.

var(AC c
a) = 20(a− 1) + c

With this mapping, the translation of the 2nd CoBaSA constraint to DIMACS format gives
us the following 40 disjuncts:

-1 -21 0

-1 -41 0

-2 -22 0

-2 -42 0

...

-20 -40 0

-20 -60 0
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The third CoBaSA constraint gets translated in a similar way. What about the first
constraint?

Well, here is one way of thinking of the map constraint using logic.

〈∀a ∈ A :: 〈∃c ∈ C :: AC c
a〉〉

This says that for every application a, there exists some cabinet c (this is the meaning of
the existential quantifier ∃), such that the indicator variable AC c

a holds (is true). Notice
that we could have said that there exists a unique cabinet c such that the indicator variable
AC c

a holds. This would have been a more faithful translation, but it turns out that if more
than one indicator variable is true, then all that means is that we have a choice as to where
to place a, so we prefer to have fewer constraints and not insist on uniqueness. Now, just
as universal quantification can be thought of as conjunction, existential quantification can
be thought of a disjunction, so we can rewrite the above constraint using only propositional
operators as:

∧

a∈A

∨

c∈C

AC c
a

We proceed as previously by expanding this out with the goal of generating a CNF formula.

AC 1
1 ∨ AC 2

1 ∨ AC 3
1 · · · ∨AC 20

1

AC 1
2 ∨ AC 2

2 ∨ AC 3
2 · · · ∨AC 20

2

...

AC 1
500 ∨ AC 2

500 ∨ AC 3
500 · · · ∨ AC 20

500

Finally, we apply var to transform the indicator variables into numbers in order to obtain
the DIMACS version of the above formula.

1 2 3 ... 20 0

21 22 23 ... 40 0

...

9980 9981 9982 ... 10000 0
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Equational Reasoning

We just finished studying propositional logic, so let’s start by considering the following
question:

Why do we need more than propositional logic?

After all, we were able to do a lot with propositional logic, including declarative design,
cryptography and digital logic.

What we are really after, however, is reasoning about programs, and while propositional
logic will play an important role, we need more powerful logics.

To see why, let’s simplify things for a moment and consider conjectures involving numbers
and arithmetic operations.

Consider the conjecture:

Conjecture 1 a+ b = ba

What does it mean for this conjecture to be true or false?
Well, there is a source of ambiguity here. If a, b are constants (like 1, 2, etc.) then we

can just evaluate the equality and determine if it is true or not.
However, a and b are variables. This is similar to the propositional formulas we saw,

e.g.,

p ∧ q ⇒ p ∨ q

Recall that p and q are atoms, and the above formula is valid. What that means is that
no matter what value p and q have, the above formula is true. Another way of saying this
is that the above formula evaluates to true under all assignments.

In Conjecture 1, a and b range over a different domain than the Booleans, let’s say they
range over the rationals.

So, what we really mean when we say that conjecture 1 is valid (or true) is that for any
rational number a and any rational number b, a + b = ba. Another way of saying this is
that the above formula evaluates to true under all assignments. Notice the similarity with
the Boolean case.

Is Conjecture 1 a valid formula?
No. We can come up with a counterexample.
Is Conjecture 1 unsatisfiable?
No. It is both satisfiable and falsifiable. Again, this is exactly the kind of characterization

we used to classify Boolean formulas. How many assignments falsify the conjecture? How
many assignments satisfy the conjecture?

What about the following conjecture?
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Conjecture 2 a+ b = b+ a

Can we come up with a counterexample?
No.
Is the formula valid?
Yes.
How do we prove that a conjecture is valid in the case of propositional logic? We use a

truth table, with a row per possible assignment, to show that no counterexample exists. A
counterexample is an assignment that evaluates to false.

Can we do something similar here?
Yes, but the number of assignments is unfortunately infinite. That means, we can never

completely fill in a table of assignments.
We need a radically new idea here.
We want something that allows us to do a finite amount of work and from that to deduce

that there are no counterexamples in the infinite table, were we even able to construct it.
Let’s look at how we might do this, but in the context of programs. First we start with

the definition of len, a function we have already seen. The function is built-in, so you will
get an error if you try redefining it, but the definition is equivalent to the following.

(definec len (l :all) :nat

(match l

(:atom 0)

((& . r) (1+ (len r)))))

Consider the following conjecture:

Conjecture 3 (= (len (list x)) (len x))

Is this conjecture true (valid) or false (falsifiable)?
What does it mean for Conjecture 3 to be true? That no matter what object of the

ACL2s universe x is, the above equality holds.
Conjecture 3 is false. Why?
Suppose that x = 1, then the conjecture evaluates to nil, i.e.,

J(= (len (list 1)) (len 1))K = J(= 1 0)K = nil

So, finding a counterexample is “easy.” All we have to do is to find an assignment under
which the conjecture evaluates to nil. This is just like the Boolean logic case.

Is Conjecture 3 unsatisfiable? No. Again, all we have to do is find one satisfying
assignment, e.g., x = (1). How many assignments falsify the conjecture? How many
assignments satisfy the conjecture?

What about:

Conjecture 4
(= (len (cons x (list z)))

(len (cons y (list z))))

Here we can’t find a counterexample.
How can we go about proving that Conjecture 4 is valid?
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(len (cons x (list z)))

= { Def len, instantiation }

(if (consp (cons x (list z))) (1+ (len (cdr (cons x (list z))))) 0)

= { car-cdr axioms }

(if (consp (cons x (list z))) (1+ (len (list z))) 0)

= { consp axioms }

(if t (1+ (len (list z))) 0)

= { if axioms }

(1+ (len (list z)))

What we have shown so far is:

(len (cons x (list z))) = (1+ (len (list z))) (4.1)

which we will feel free to write as

(len (cons x (list z))) = 1 + (len (list z)) (4.2)

because it should be clear how to go from (4.1) to (4.2) and because we have been trained
to use infix for arithmetic operators since elementary school.

You should be able to continue the proof to show that

(len (cons x (list z))) = 2 (4.3)

Finish the proof.
Once the proof is done, we have shown that (4.3) is valid. Any validity that we establish

via proof is called a theorem, so (4.3) is a theorem. To reason about built-in functions such as
consp, if, and equal we use axioms, which you can think of as built-in theorems providing
the semantics of the built-in functions. Every time we define a function that ACL2s admits,
we also get a definitional axiom, which, for now, you can think of as an axiom stating that
the function is equal to its body (but more on this soon). We can then reason from these
basic axioms (which are also theorems) using what is called first order logic. First order logic
includes propositional reasoning, but extends it significantly. We will introduce as much of
first order reasoning as needed.

Back to our proof. We are not done with the proof of Conjecture 4, but there are at
least two reasonable ways to proceed.

First, we might say:
If we simplify the RHS (Right Hand Side), we get
(len (cons y (list z)))

= { Def len, instantiation }

. . .

= { if axioms }

(+ 1 (len (list z)))

= { Def len, instantiation }

. . .

= { Arithmetic }
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2

So, the LHS (Left Hand Side) and RHS are equal.
What we realized is that the same steps that we used to simplify the LHS can be used

in a symmetric way to simplify the RHS. In this class we will avoid proofs involving “. . .”.
Here’s a better way to make the argument:

First, note that (4.3) is a theorem. By instantiating (4.3) with the substitution ((x y)),
we get:

(len (cons y (list z))) = 2 (4.4)

Putting (4.3) and (4.4) together, we have

(len (cons x (list z))) = (len (cons y (list z)))

So, Conjecture 4 is a theorem.
We already saw that instantiation can be used in propositional logic. Its use is indis-

pensable when reasoning about ACL2s programs!
This example highlights the new tool we have that allows us to reason about programs:

proof. The game we will play is to construct proofs of conjectures involving some of the
basic functions we have already defined (e.g., len and app). We will focus on these simple
functions because their simplicity allows us to focus exclusively on how to prove theorems
without the added complexity of having to understand what conjectures mean.

Once we prove that a conjecture is valid, we say that the conjecture is a theorem. We are
then free to use that theorem in proving other theorems. This is similar to what happens
when we program: we define functions and then we use them to define other functions (e.g.,
we define lrev using app).

What’s new here?
Well, we are beyond the realm of the propositional. We have variables ranging over the

ACL2s universe, equality, and functions.
Let’s look at equality. To simplify notation, we tend to write expressions involving equal

using = instead. This is similar to what we did with arithmetic. For example, instead of
writing the more technically correct

(= (len (cons x z)) (len (cons y z)))

we usually write the more familiar

(len (cons x z)) = (len (cons y z))

We feel free to go back and forth without justification.
If we want to be pedantic, here is how equal and = are related.

� x = y ⇒ (equal x y) = t

� x 6= y ⇒ (equal x y) = nil

When we use = or 6= in expressions, they bind more tightly than any of the propositional
operators.

How can we reason about equality? We will use just two properties of equality. First,
equality is what is called an equivalence relation, i.e., it satisfies the following properties.

� Reflexivity: x = x
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� Symmetry: x = y ⇒ y = x

� Transitivity: x = y ∧ y = z ⇒ x = z

That = is an equivalence relation is what allows us to chain together the sequence of
equalities in the proof of Conjecture 4 above to conclude that (len (cons x (list z)))

= 2.
The second property of equality we will use is the Equality Axiom Schema for Functions :

For every function symbol f of arity n we have the axiom

(x1 = y1 ∧ · · · ∧ xn = yn) ⇒ (f x1 · · ·xn) = (f y1 · · · yn)

To reason about constants, we can use evaluation, e.g., all of the following are theorems.

t 6= nil

() = nil

1 6= 2

2/4 = 4/8

(cons 1 ()) = (list 1)

We will only use evaluation when there are no contract violations, e.g., we will not be able
to use evaluation to simplify (endp 3) because (listp 3) does not hold.

To reason about built-in functions, such as if, cons, car, and cdr, we have axioms for
each of these functions that are derived from their semantics.

x = nil ⇒ (if x y z) = z

x 6= nil ⇒ (if x y z) = y

(car (cons x y)) = x

(cdr (cons x y)) = y

(consp (cons x y))

(consp x) ⇒ x = (cons (car x) (cdr x))

(cons x1 y1) = (cons x2 y2) ≡ x1 = x2 ∧ y1 = y2

¬(consp x) ⇒ (car x) = nil

¬(consp x) ⇒ (cdr x) = nil

We have similar axioms for other built-in types such as characters, strings and numbers.
For example, to reason about numbers, we have access to the following axioms (this is a
very partial list).

(rationalp x) ⇒ (posp (denominator x))

(rationalp x) ⇒ (intp (numerator x))

(rationalp x) ⇒ (* (/ (denominator x)) (numerator x)) = x

(intp x) ⇒ (rationalp x)

(intp x) ⇒ (intp (+ x 1))
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(intp x) ⇒ (intp (+ x -1))

Since our focus is on reasoning about computation and not on formally reasoning about
number theory, we will allow ourselves to freely use any high-school level arithmetic theorems
with the hint “Arith” or “Arithmetic.” We will focus on reasoning about lists and numbers,
so we will not review the axioms for strings, characters, etc. Once you can reason about
lists and numbers, reasoning about strings, characters, etc. is a straight-forward extension.

One of our most powerful and widely-used rules of inference is instantiation.
Instantiation: If φ is a theorem and σ is a substitution, then φ|σ is a theorem.

For example, since this is a theorem:

(== (car (cons x y)) x)

we can conclude that the following is a theorem by instantiation.

(== (car (cons (foo x) (bar z))) (foo x))

More carefully, a substitution is just a list of the form:

((var1 term1) . . . (varn termn))

where the var i are variables (symbols such as x, y, etc.) that we refer to as target variables
and the termi are expressions that we refer to as images. We require that the var i are
distinct. The application of this substitution to a formula uniformly replaces every free
occurrence of a target variable by its image.

Compare this version of instantiation with the propositional logic version.
The definition of a free occurrence of a variable will be provided with the help of the

following examples. The first point is that there is a distinction between function symbols
and variable symbols. Consider:

(f (g f g) ’f)|((f x) (x g) (g f)) = (f (g x f) ’f)

Notice that we only substitute an occurrence of a symbol that corresponds to a variable,
which is why the occurrence of f in function position (f ...) was not changed. On the
other hand, the occurrence of f in (g f g) is a variable and it was replaced by its image
in the substitution. Also, ’f is not a variable. It is a constant and it is not affected by any
substitution. The general rule is that quoted objects are never modified by a substitution.
One more thing to notice with this example is that substitutions are similar to lets: you do
not keep recursively applying the substitution. For example the free occurrence of g became
f, but we do not recursively keep applying the substitution, which would wind up leading
to an infinite loop. If you want an algorithmic way of thinking about substitution, then
just start copying the expression until you get to a free occurrence of a target variable and
replace it by its image and then continue on with the rest of the expression. Once you get
to the end of the expression, you are done. This part is exactly the same as substitutions
in propositional logic, something we have already covered and seen many times.

Another point involves bound occurrences of variables. Substitution in the presence of
binding forms such as let requires care. Consider:

(list a b c (let ((a 0) (c a)) (list a b c)))|((a b) (b a) (c a))

In the body of the above let, the variables a and c are bound, but the variable b is free. Free
variables are problematic, as we will see shortly, so ACL2s treats let expressions with free
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variables as abbreviations for expressions without free variables by adding identity bindings.
For example, the above expression becomes:

(list a b c (let ((a 0) (c a) (b b)) (list a b c)))|((a b) (b a) (c a))

Now, all variables in the body of the let are bound and substitution of let expressions
only affects the second elements of the binding forms. Hence the above expression becomes:

(list b a a (let ((a 0) (c b) (b a)) (list a b c)))

Recall that let is a parallel binding so the second a in (let ((a 0) (c b) (b a)) ...)

is free.
A let* form is equivalent to a nested let form, so we do not have to consider it as a

special case.
Why is the definition of ACL2s substitution more complicated than it was in the case

of propositional logic? Because the ACL2s logic is more powerful and because we want
instantiation to be a valid rule of inference, as we use it all the time.

If we did not make distinctions between free and bound occurrences of variables, then
instantiation would not be a valid rule of inference, e.g., consider:

ϕ = (=> (natp y) (= (let ((x 0)) (+ x y)) y)), σ = ((x 1))

Clearly ϕ is a theorem, as is:

ϕ|σ = (=> (natp y) (= (let ((x 0) (y y)) (+ x y)) y))

But, if we were to replace every occurrence of x with 1, we would get the following, which
is not even an expression, let alone a theorem.

(=> (natp y) (= (let ((1 0)) (+ 1 y)) y))

If we just replace the second occurrence of x, we get the following, which is an expression,
but not a theorem.

(=> (natp y) (= (let ((x 0)) (+ 1 y)) y))

Consider the tricky substitution σ′ = ((y x)). Notice that the following is a theorem:

ϕ|σ′ = (=> (natp x) (= (let ((x 0) (y x)) (+ x y)) x))

But, if we did not add the identify binding for y, we would get the following, which is not
a theorem.

(=> (natp x) (= (let ((x 0)) (+ x x)) x))

The above is an example of a problem often referred to as variable capture and there are
many ways of dealing with this problem. For example, readers who have studied logic, will
have probably seen definitions of substitution that use variable renaming to avoid variable
capture. In ACL2s, we avoid the use of variable renaming.

To see why we distinguish between function symbols and variable symbols, consider the
theorem

ϕ = (consp (cons x y)), σ = ((consp atom))
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Clearly, ϕ is a theorem as is

ϕ|σ = (consp (cons x y))

But, if we were to replace every occurrence of consp with atom, we would get the following,
which is not a theorem.

(atom (cons x y))

Finally, to see why quoted objects are not variables, consider:

ϕ = (symbolp ’x), σ = ((x 1))

Clearly ϕ is a theorem, as is:
ϕ|σ = (symbolp ’x)

But, if we were to replace every occurrence of x with 1, we would get the following, which
is not a theorem.

(symbolp ’1)

Notice that substitutions only replace variables. You cannot replace expressions or con-
stants. To see why we have this restrictions, consider:

ϕ = (= (+ 1 1) 2), σ = ((1 0))

Clearly ϕ is a theorem, but, if we were to replace every occurrence of 1 with 0, we would
get the following, which is not a theorem.

ϕ = (= (+ 0 0) 2)

Next consider:

ϕ = (=> (natp x) (= (+ x x) (* 2 x))), σ = (((+ x x) x))

Clearly ϕ is a theorem, but, if we were to replace every occurrence of (+ x x) with x, we
would get the following, which is not a theorem.

ϕ = (=> (natp x) (= x (* 2 x)))

What does it mean to say that the following is a theorem?

(len (cons x (list z))) = (len (cons y (list z)))

That no matter what you replace x, y, and z with from the ACL2s universe, the LHS and
RHS evaluate to the same thing.

Let’s try to prove another conjecture.

Conjecture 5 (app (cons x y) z) = (cons x (app y z))
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(app (cons x y) z)

= { Def app, instantiation }

(if (endp (cons x y)) z (cons (car (cons x y)) (app (cdr (cons x y)) z)))

= { Def endp, consp axioms }

(if nil z (cons (car (cons x y)) (app (cdr (cons x y)) z)))

= { if axioms }

(cons (car (cons x y)) (app (cdr (cons x y)) z))

= { car-cdr axioms }

(cons x (app y z))

Unfortunately, the above “proof” has a problem. Unlike len, which is defined for the
whole ACL2s universe, app is only defined for true lists.

The following functions are built-in and below we show their definitions.

(definec true-listp (l :all) :bool

(match l

(:atom (== l ()))

((& . r) (true-listp r))))

(definec endp (l :list) :bool

(atom l))

(definec bin-app (x y :tl) :tl

; bin-app appends two lists together

(match x

(nil y)

((f . r) (cons f (bin-app r y)))))

Recall that tlp is an abbreviation for true-listp, so we will be using the shorter tlp
from now on. Also, app is a macro that takes an arbitrary number of arguments and
expands into bin-app’s, so we will use app instead of bin-app in the sequel. The definition
of functions such as bin-app give rise to definitional axioms. Here is the definitional axiom
that bin-app gives rise to:

(tlp x) ∧ (tlp y)

⇒
(app x y)

=

(if (== x nil)

y

(cons (car x) (app (cdr x) y)))

Notice that we are taking certain liberties in expanding out the match macro. We will
often replace match forms with equivalent forms using more basic functions.

In general, every time we successfully admit a function, we get two theorems of the form

ic ⇒ (f x1...xn) = body

ic ⇒ oc
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where ic is the input contract for f, and where oc is the output contract for f. We will be
very precise about what “successfully admit” means, but, for now, take this to mean that
ACL2s accepts your function definition with definec. When using defunc, we get similar
theorems. Recall that this involves proving termination, proving the function contracts, and
proving the body contracts.

So, we can’t expand the definition of app in the proof of Conjecture 5, unless we know:

(tlp (cons x y)) ∧ (tlp z)

which is equivalent to:

(tlp y) ∧ (tlp z)

So, what we really proved was:

Theorem 4.1 (tlp y) ∧ (tlp z) ⇒ (app (cons x y) z) = (cons x (app y z))

When we write out proofs, we are not required to explicitly mention input contracts in
hints when using a function definition because the understanding is that every time we use a
definitional axiom to expand a function, we have to check that we satisfy the input contract,
so we don’t need to remind the reader of our proof that we did something we all understand
always needs doing. Just because we are not required to mention such hints does not mean
that we must not mention them. If it seems clearer to mention hints, we will feel free to do
so.

It is often the case that when we think about conjectures that we expect to be valid,
we often forget to carefully specify the hypotheses under which they are valid. These
hypotheses depend on the input contracts of the functions mentioned in the conjectures,
so get into the habit of looking at conjectures and making sure that they have the needed
hypotheses. Contract checking is the process of checking that a conjecture has all the
hypotheses required by the contracts of the functions appearing in the conjecture. Contract
completion is the process of adding the missing hypotheses (if any) identified during contract
checking. Contract checking and completion is similar to what you do when you write
functions: you check the body contracts of the functions you define and if you are calling
the functions on arguments of the wrong type, then you modify your code appropriately.
In the case of function definitions, as we have seen, it is often the case that if the function
definition is wrong, there is also a contract violation. Similarly, if a conjecture is not valid,
it is often the case that there is a contract violation.

Consider the following definition and (valid) conjecture.

(definec ln (l :tl) :nat

(if (endp l)

0

(+ 1 (ln (tail l)))))

Conjecture 6 (== x nil) ⇒ (ln x) 6= 0

Contract checking passes, so there is no need for contract completion.
Our context is:

C1. (== x nil)
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Consider the buggy following “proof” of the conjecture.
(ln x)

= { Def ln, C1 }

(if (endp x) 0 (+ 1 (ln (tail nil))))

= { Evaluation of (+ 1 (ln (tail nil))) }

Contract Violation

The above “proof” is incorrect because we cannot evaluate expressions unless function
contracts are satisfied. Just because we performed contract checking of the whole conjecture
does not mean that we cannot wind up with subexpressions in our proof that fail contract
checking. That is why you should always check contracts, even if you are not required to
explicitly state in the hints that you did so. This applies to the use of any theorems, the
expansion of function definitions, the use of evaluation, etc. This example is somewhat
pathological and highlights why, as a general rule, we do not expand out definitions unless
we can determine which case of the if or cond we wind up with. Notice that we can
evaluate the whole if expression, thereby obtaining 0. However, we do not restrict how one
can use evaluation, theorems, definitions, etc., because we want the flexibility to simplify
subexpression when it makes sense to do so. The example is only meant to highlight that
you do have check contracts even if you do not have to mention that you are doing so in a
hint.

Let’s look at another example:

Conjecture 7 (endp x) ⇒ (app (app x y) z) = (app x (app y z))

Can you prove this? Check the contracts of the conjecture.
Contract checking and completion gives rise to:

Conjecture 8 (tlp x) ∧ (tlp y) ∧ (tlp z) ∧ (endp x) ⇒ (app (app x y) z) =
(app x (app y z))

By the way, notice all of the hypotheses. Notice the Boolean structure. This is why we
studied Boolean logic first! Almost everything we will prove will include an implication.

Notice that in ACL2s, we would technically write:

(=> (^ (tlp x)

(tlp y)

(tlp z)

(endp x))

(== (app (app x y) z)

(app x (app y z))))

The first thing to do when proving theorems is to take the Boolean structure into account
by writing the conjecture in the form:

hyp1 ∧ hyp2 ∧ · · · ∧ hypn ⇒ conc

where we have as many hyps as possible. We will call the set of top-level hypotheses (i.e.,
{hyp1, hyp2, . . . , hypn}) our context.

Our context for Conjecture 8 is:
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C1. (tlp x)

C2. (tlp y)

C3. (tlp z)

C4. (endp x)

We then look at our context and see what obvious things our context implies. The
obvious thing here is that C1 and C4 imply that x must be nil, so we extend our context
with a derived context :

D1. x = nil { C1, C4 }

Notice that any new facts we add must come with a justification. We will use the
convention that all elements of our context will be given a label of the form Ci, where i is
a positive integer and that all elements of our derived context will be given a label of the
form Di, where i is a positive integer.

The next thing we do is to start with the LHS of the conclusion and to try and reduce it
to the RHS, using our proof format. If we need to refer to the context in one of proof step
justifications, say Derived Context 1, we write D1.

(app (app x y) z)

= { Def app, D1, Def endp, if axioms }

(app y z)

= { Def app, D1, Def endp, if axioms }

(app x (app y z))

Notice that we took bigger steps than before. Before we might have written:
(app (app x y) z)

= { Def app }

(app (if (endp x) y (cons (car x) (app (cdr x) y))) z)

= { D1 }

(app (if (endp nil) y (cons (car nil) (app (cdr nil) y))) z)

= { Def endp }

(app (if t y (cons (car nil) (app (cdr nil) y))) z)

= { If axioms }

(app y z)

. . .

So, the above four steps were compressed into one step. Why? Because many of the
steps we take involve expanding the definition of a function. Function definitions tend to
have a top-level if or cond and as a general rule we will not expand the definition of such
a function unless we can determine which case of the top-level if-structure will be true. If
we just blindly expand function definitions, we’ll wind up with a sequence of increasingly
complicated terms that don’t get us anywhere. So, if we know which case of the top-level
if is true, then why go to the trouble of writing out the whole body of the function? Why
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not just write out that one case? Well, that’s why we allow ourselves to expand definitions
as in the first proof of Conjecture 8.

One other comment about the first proof of Conjecture 8. Students often have no
difficulty with the first step, but have difficulty with the second step. The second step
requires one to see that the simple term:

(app y z)

can be transformed into the RHS

(app x (app y z))

This may seem like a strange thing to do because students are used to thinking about
computation as unfolding over time. So, if x is nil then of course the following holds.

(app (app x y) z)

= { Def app, . . . }

(app y z)

Because when we compute (app x y) we get y.
What students initially have difficulty with is seeing that you can reverse the flow of

time and everything still works. For example the following is true,
(app y z)

= { Def app, . . . }

(app (app x y) z)

Because starting with (app y z) we can run time in reverse to get (app x (app y z))

(recall x is nil). In fact, this is “obvious” from the equality (=) axioms that tell us that
equality is an equivalence relation (reflexive, symmetric, and transitive). The symmetry
axiom tells us that we can view computation as moving forward in time or backward. It
just doesn’t make a difference.

As an aside, it turns out that in physics, we can’t reverse time and so this symmetry
we have with computation is not a symmetry we have in our universe. One reason why
we can’t reverse time in physics is that the second law of thermodynamics precludes it.
The second law of thermodynamics implies that entropy increases over time. There is
an even more fundamental reason why time is not reversible. This second reason has to
do with the fundamental laws of physics at the quantum level, whereas the second law of
thermodynamics is thought to be a result of the initial conditions of our universe. The second
reason is that in our current understanding of the universe, there are very small violations of
time reversibility exhibited by subatomic particles. The extent of the violations is not fully
understood and probably has something to do with the imbalance of matter and antimatter
in the visible universe. There is almost no antimatter in the visible universe and one of the
big open problems in physics is trying to understand why that is the case.

4.1 Testing Conjectures

Recall that since Conjecture 8 is a theorem, whatever we replace the free variables with, the
conjecture will evaluate to t. A convenient way of checking the conjecture using ACL2s is
to use let, as follows:
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(let ((x nil)

(y nil)

(z nil))

(=> (^ (tlp x)

(tlp y)

(tlp z)

(endp x))

(== (app (app x y) z)

(app x (app y z)))))

An even more convenient method is to use ACL2s to test the conjecture. Here is how:

(property (x y z :tl)

:hyps (endp x)

(== (app (app x y) z)

(app x (app y z))))

There are three possible outcomes.

1. ACL2s proves that the conjecture is a theorem.

2. ACL2s finds a counterexample, i.e., the conjecture is falsifiable.

3. None of the above hold, i.e., the conjecture satisfies all of the tests ACL2s tries.

Consider another example. Consider the claim that app2, below, is equivalent to app.

(definec ap (x y :tl) :tl

(match y

(nil x)

((f . r) (cons f (ap x r)))))

The claim is false, but ap works fine on many tests, e.g.,

(check= (ap ’(1 2) ’(1 2)) ’(1 2 1 2))

(check= (ap nil nil) nil)

(check= (ap nil ’(1 2 3)) ’(1 2 3))

(check= (ap ’(1 2 3) nil) ’(1 2 3))

Here is how we can use ACL2s to test the conjecture that ap is equivalent to our defini-
tion.

(property (x y :tl)

(== (ap x y)

(app x y)))

ACL2s gives us counterexamples. It also shows us cases in which the conjecture is true.
Now, suppose that the specification for ap only stated that (ap x y) must return a

list that contains all of the elements in x and all of the elements in y, where order doesn’t
matter, but repetitions do. The definition of ap above satisfies the specification. In addition,
there are many semantically different functions that satisfy the specification. How can we
write tests that are independent of the implementation? We cannot write simple check=’s
because there are exponentially many correct answers that ap could return. We can’t test
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that ap is equal to our solution for the same reason. But, we can write conjectures that
capture the specification and ACL2s can be used to test these conjectures.

Here is one way of doing this. We test that every element in (ap x y) is also an element
of (app x y) and conversely.

; check that if a is in ap, it is in app

(property (a :all x y :tl)

:hyps (in a (ap x y))

(in a (app x y)))

; check that if a is in app, it is in ap

(property (a :all x y :tl)

:hyps (in a (app x y))

(in a (ap x y)))

Exercise 4.1 Unfortunately, we can define ap in a way that does not satisfy the specifica-
tion, but does satisfy the above test?’s. Exhibit such a definition and check that it passes
the above tests. A better solution is to test that ap is a permutation of app. Define a
function that checks if its arguments are permutations of one another and use this to test
both your faulty definition of ap and the definition given above.

You can control how much testing ACL2s does. The default number of tests depends
on the mode, but you can set it to whatever number you want, e.g., here is how to instruct
ACL2s to run 1,000 tests.

(acl2s-defaults :set num-trials 1000)

To summarize, ACL2s provides test?, a powerful facility for automatically testing pro-
grams. Instead of having to manually write tests, ACL2s generates as many tests as re-
quested automatically. The other major advantage is that we do not have to specify exactly
what functions have to do. In the ap example above, we did not have to say what ap re-
turns; instead, we specified the properties we expect ap to satisfy. The advantage is that
we decouple the testing of ap from the development of ap. In fact, even if we change the
implementation of ap, the tests can remain the same.

4.2 Equational Reasoning with Complex Propositional Structure

Many of the conjectures we will examine have rich propositional structure. We now examine
how to reason about such conjectures.

Conjecture 9

(consp x)

⇒
[[(tlp (cdr x)) ∧ (tlp y) ∧ (tlp z)

⇒
(app (app (cdr x) y) z) = (app (cdr x) (app y z))]

⇒
[(tlp x) ∧ (tlp y) ∧ (tlp z)



92 Reasoning About Programs

⇒
(app (app x y) z) = (app x (app y z))]]

The above conjecture has the form

A ⇒ [B ⇒ C]

where

A is (consp x)

B is [(tlp (cdr x)) ∧ (tlp y) ∧ (tlp z)

⇒ (app (app (cdr x) y) z) = (app (cdr x) (app y z))]

C is [(tlp x) ∧ (tlp y) ∧ (tlp z)

⇒ (app (app x y) z) = (app x (app y z))]

What we are doing here is identifying some of the propositional structure of Conjecture 9.
Here’s why. Remember exportation, a propositional validity we have already encountered.

A ⇒ [B ⇒ C] ≡ [A ∧B] ⇒ C

We will use exportation almost all the time. We now use it to rewrite Conjecture 9
so that the context has as many conjunctions as possible. After applying exportation to
Conjecture 9, we get:

[(consp x) ∧
[(tlp (cdr x)) ∧ (tlp y) ∧ (tlp z)

⇒
(app (app (cdr x) y) z) = (app (cdr x) (app y z))]

⇒
[(tlp x) ∧ (tlp y) ∧ (tlp z)

⇒
(app (app x y) z) = (app x (app y z))]]

Applying exportation again and rearranging conjuncts gives us:

Conjecture 10

[(consp x) ∧
(tlp x) ∧
(tlp y) ∧
(tlp z) ∧
[(tlp (cdr x)) ∧ (tlp y) ∧ (tlp z)

⇒
(app (app (cdr x) y) z) = (app (cdr x) (app y z))]

⇒
(app (app x y) z) = (app x (app y z))]

Now, we can extract the context. Doing so gives us:

C1. (consp x)
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C2. (tlp x)

C3. (tlp y)

C4. (tlp z)

C5. [(tlp (cdr x)) ∧ (tlp y) ∧ (tlp z)] ⇒
[(app (app (cdr x) y) z) = (app (cdr x) (app y z))]

Notice that we cannot use exportation on C5 to add the hypotheses of C5 to our context.
Why?

We will be confronted with implications in our context (like C5) over and over. Usually
what we will need is the consequent of the implication, but we can only use the consequent
if we can also establish the antecedent, so we will try to do that in the derived context.
Here’s how:

D1. (tlp (cdr x)) { Def tlp, C2, C1 }

D2. (app (app (cdr x) y) z) = (app (cdr x) (app y z)) { C5, D1, C3, C4, MP }

So, notice what we did. First we added D1 to our derived context. How did we get D1?
Well, we know (tlp x) (C2) and (consp x) (C1) so if we use the definitional axiom of tlp,
we get D1: (tlp (cdr x)).

Now, we have extended our context to include the antecedent of D1, so by propositional
logic (Modus Ponens, abbreviated MP), we get that the conclusion also holds, i.e., D2.

Recall that Modus Ponens tells us that if the following two formulas hold

A ⇒ B

A

Then so does the formula

B

We are now ready to prove the theorem. We start with the LHS of the equality in the
conclusion of Conjecture 10.

(app (app x y) z)

= { Def app, C1, C2, C3 }

(app (cons (car x) (app (cdr x) y)) z)

= { Theorem 4.1 }

(cons (car x) (app (app (cdr x) y) z))

= { D2 }

(cons (car x) (app (cdr x) (app y z)))

= { Def app, C1, C2, C3, C4 }

(app x (app y z))
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4.3 The difference between theorems and context

It is very important to understand the difference between a formula that is a theorem and
one that appears in a context. A formula that appears in a context cannot be instantiated. It
can only be used as is, in the proof attempt for the conjecture from which it was extracted.
This is a major difference. Our contexts will never include theorems we already know.
Theorems we already know are independent of any conjecture we are trying to prove and
therefore do not belong in a context. A context is always formula specific.

Here is an example that shows why instantiation of context formulas leads to unsound-
ness. Here is a “proof” of

x = 1 ⇒ 0 = 1 (4.5)

Context:

C1. x = 1

Proof
0

= { Instantiate C1 with ((x 0)) }

1

So, now we have a “proof” of (4.5), but using (4.5) we can get:

nil (4.6)

How?
Instantiate (4.5) with ((x 1)), use Propositional logic, and Arithmetic.
Now we have a proof for any conjecture we want, e.g.,

φ (4.7)

How?
Well, nil (false) implies anything, so this is a theorem

nil ⇒ φ

Now, φ follows using (4.6) and Modus Ponens.
The point is that a context, including the derived context, is completely different from

a theorem. The context of (4.5) does not tell us that for all x, x = 1. It just tells us that
x = 1 in the context of conjecture (4.5). Contexts are just a mechanism for extracting
propositional structure from a conjecture, which in turn allows us to focus on the important
part of a proof and to minimize the writing we have to do.

4.4 Undecidability of Equational Reasoning

In the cases we have seen so far, it was easy to decide if a conjecture was true or false,
and with a good amount of testing, we would have identified the false conjectures. In fact,
ACL2s does that automatically.

Is this always the case?
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No.
Consider Fermat’s last theorem.

Conjecture 11 For all positive integers x, y, z, and n, where n > 2, xn + yn 6= zn.

In 1637, Fermat wrote about the above:

“I have a truly marvelous proof of this proposition which this margin is too
narrow to contain.”

This is called Fermat’s Last Theorem. It took 357 years for a correct proof to be found
(by Andrew Wiles in 1995).

We can use Fermat’s last theorem to construct a conjecture that is hard to prove in
ACL2s. We start with the following definition.

(definec f (x y z :pos n :nat) :bool

:input-contract (> n 2)

(!= (+ (expt x n) (expt y n))

(expt z n)))

Now consider the following conjecture.

(property (x y z :pos n :nat)

:hyps (> n 2)

(f x y z n))

So, proving theorems may be hard.
Notice also that if we added the following output contract:

:output-contract (== (f x y z n) t)

then ACL2s would have to prove a theorem that eluded mankind for centuries in order
to even admit f!

But, it is easy to find a counterexample to a conjecture that is not a theorem, right?
That is not true either. There are many examples of conjectures that took a long time

to resolve, and which turned out to be false.
In fact, the satisfiability problem for arithmetic expressions over the integers, using only

=,+, · is undecidable. That means that no algorithm exists that given such an arithmetic
expression returns “yes” if there is an assignment that makes the expression true and “no”
otherwise. Notice that this also means that the validity problem is undecidable because φ is
satisfiable iff ¬φ is not valid, i.e., if we had a decision procedure for validity, we could use it
to obtain a decision procedure for satisfiability. We will see a proof of a classic undecidability
result (the undecidability of the halting problem) in a subsequent chapter.

We end by showing that even admitting definec functions in ACL2s is no easier than
proving the validity of formulas. Consider any conjecture φ over variables x1, . . . , xn. Now
consider the following ACL2s code.

(defdata true t)

(definec f (x1 :all · · ·xn :all) :true

φ)

ACL2s has to prove φ to admit f because the function contract is:

(=> (and (allp x1) ... (allp xn)) (truep φ))
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but since (allp x) = t, this is equivalent to:

(truep φ)

Once you have a logic that includes basic number theory there is no shortage of simple
interesting questions whose answer is unknown.

Exercise 4.2 Formalize the following false claim in ACL2s using test? and find a coun-
terexample.

Claim: The equation x3+ y3+ z3 = 29 does not have a solution in Z (Z is the integers).

Exercise 4.3 Formalize the following claim in ACL2s using test?. If false, find a coun-
terexample. If true, prove it (any proof is fine).

Claim: The equation x3+ y3+ z3 = 30 does not have a solution in Z (Z is the integers).
Hint: This is hard.

Exercise 4.4 Formalize the following claim in ACL2s using test?. If false, find a coun-
terexample. If true, prove it (any proof is fine).

Claim: The equation x3+ y3+ z3 = 33 does not have a solution in Z (Z is the integers).
Hint: This is very hard and was an unsolved problem.

Exercise 4.5 Formalize the following claim in ACL2s using test?. If false, find a coun-
terexample. If true, prove it (any proof is fine).

Claim: The equation x3+y3+z3 = 114 does not have a solution in Z (Z is the integers).
Hint: This is very hard and is currently an unsolved problem.

Exercise 4.6 Formalize the following claim in ACL2s using test?. If false, find a coun-
terexample. If true, prove it (any proof is fine).

Claim: The equation x3+ y3+ z3 = 95 does not have a solution in Z (Z is the integers).

4.5 Arithmetic

We can also reason about arithmetic functions. For example, consider the following conjec-
ture

n
∑

i=0

i =
n(n+ 1)

2

That is, summing up 0, 1, . . . , n gives n(n+1)
2 .

We can prove this using mathematical induction.
Here is how we do it in ACL2s. First, we have to define Σ.

(definec sum (n :nat) :nat

(match n

(0 0)

(& (+ n (sum (1- n))))))

We can prove that (sum n) = n(n+1)
2 , which is formalized as:

(=> (natp n)
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(= (sum n)

(/ (* n (+ n 1)) 2)))

by mathematical induction. How?
First, we have the base case.

(natp n) ∧ (= n 0) ⇒ (sum n) = (/ (* n n+1) 2) (4.8)

Second, we have the induction step.

(natp n) ∧ n 6= 0 ∧ ((natp n-1) ⇒ (sum n-1) = (/ (* n-1 n) 2))

⇒ (sum n) = (/ (* n n+1) 2)
(4.9)

Here is the proof, starting with (4.8).
Context:

C1. (natp n)

C2. (= n 0)

Proof:
(sum n)

= { Def sum, C2 }

0

= { Arithmetic, C2 }

(/ (* n n+1) 2)

Here is the proof of (4.9).
Context:

C1. (natp n)

C2. n 6= 0

C3. (natp n-1) ⇒ (sum n-1) = (/ (* n-1 n) 2)

Derived Context:

D1. (natp n-1) { C1, C2 }

D2. (sum n-1) = (/ (* n-1 n) 2) { C3, D1, MP }

Proof:
(sum n)
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= { Def sum, C2 }

n + (sum n-1)

= { D2 }

n + (/ (* n-1 n) 2)

= { Arithmetic }

(2n+ n(n− 1))/2

= { Arithmetic }

(2n+ n2 − n)/2

= { Arithmetic }

(n2 + n)/2

= { Arithmetic }

n(n+ 1)/2

4.6 How to prove theorems

When presented with a conjecture, make sure that you check contracts, as shown above.
If the contracts checking succeeds, make sure you understand what the conjecture is

saying.
Once you do, see if you can find a counterexample.
If you can’t find a counterexample, try to prove that the conjecture is a theorem.
One often iterates over the last two steps.
During the proof process, you have available to you all the theorems we have proved so

far. This includes all of the axioms (car-cdr axioms, if axioms, . . .), all the definitional
axioms (Def app, len, ...), all the contract theorems (Contract of app, len, ...). These
theorems can be used at any time in any proof and can be instantiated using any substitution.
They are a great weapon that will help you prove theorems, so make sure you understand
the set of already proven theorems.

There are also local facts extracted from the conjecture under consideration. Recall that
the first step is to try and rewrite the conjecture into the form:

[C1 ∧ C2 ∧ . . . ∧ Cn] ⇒ RHS

where we try to make RHS as simple as possible. C1, . . . , Cn are going to be the first
n components of our context. Formulas in the context are specific to the conjecture under
consideration. They are completely different from theorems (as per the above discussion).
A good amount of manipulation of the conjecture may be required to extract the maximal
context, but it is well worth it.

The next step is to see what other facts the C1, . . . , Cn imply. For example, if the current
context is:
Context:

C1. (endp x)

C2. (tlp x)
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then, we create the derived context and populate it as follows.

D1. x = nil { C1, C2 }

This will happen a lot. Another case that will happen a lot is:

C1. (consp x)

C2. (tlp x)

C3. (tlp (cdr x)) ⇒ φ

then the the derived context includes:
Derived Context:

D1. (tlp (cdr x)) { C1, C2, Def tlp }

D2. φ { C3, D1, MP }

where MP is Modus Ponens.
As was the case when we studied propositional logic, we have “word problems,” some-

thing we now consider:

Conjecture 12 x ≤ xy if y ≥ 1

Question: What does the above conjecture mean, anyway?
It means that for any values of x, and y, if y ≥ 1 then x ≤ xy.
Really? Any values? What if x and y are functions or strings or . . .? Usually the domain

is implicit, i.e., “clear from context.”
We will be using ACL2s, and we can’t appeal to “context.” This is a good thing!
Notice also that we can use ACL2s, a programming language, to make mathematical

statements. Of course! Programming languages are mathematical objects and you reason
about programs the way you reason about the natural numbers, the reals, sets, etc.: you
prove theorems.

In ACL2s, we have to be precise about the conditions under which we expect the con-
jecture to hold. The conjecture can be formalized in ACL2s as follows:

(property (x y :rational)

:hyps (>= y 1)

(<= x (* x y)))

In standard mathematical notation it is:

〈∀x, y ∈ Q :: y ≥ 1 ⇒ x ≤ xy〉

Is the above conjecture true?
Well, when given a conjecture, we can try one of two things:

1. Try to falsify it.

2. Try to prove it is correct.
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How do we falsify a conjecture?
Simple exhibit a counterexample.
Remember that in the design recipe, we construct examples and tests. You should do the

same thing with conjectures. That is, we can test that the conjecture is true on examples.
Here are some:

1. x = 0, y = 0

2. x = 12, y = 1/3

3. x = 9, y = 3/2

Any others?
How do we test this in ACL2s? Put the conjecture in the body of a let.

(let ((x 0)

(y 0))

(=> (^ (rationalp x)

(rationalp y)

(>= y 1))

(<= x (* x y))))

We are using a programming language, so we can do better. We can write a program
to test the conjecture on a large number of cases. How many cases are there? We can use
a random number generator to “randomly” sample from the domain. We’ll see how to do
that in ACL2s.

(property (x y :rational)

:hyps (>= y 1)

(<= x (* x y)))

If all of the tests pass, then we can try to prove that the conjecture is a theorem.
What would a “proof” of the above conjecture look like?
Most proofs are informal and it takes a long time for students to understand what

constitutes an informal proof. This happens by osmosis over time.
In our case, we have a simple rule: it’s a proof if ACL2s says it is.

(property (x y :rational)

:hyps (>= y 1)

(<= x (* x y)))

Of course, this isn’t a theorem.
Let’s consider another example:

Conjecture 13 x(y+z) = xy + xz

How do we write this in ACL2s?

(property (x y z :rational)

(= (* x (+ y z))

(+ (* x y) (* x z))))

Is the above conjecture true?
Well, we can try to falsify it.
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(let ((x 0)

(y 0)

(z 0))

(= (* x (+ y z))

(+ (* x y) (* x z))))

We can try many examples. We can automatically generate random examples.

(property (x y z :rational)

:proofs? nil

(= (* x (+ y z))

(+ (* x y) (* x z))))

When do we give up falsifying this?
Can we just try all the possibilities? If we had infinite time. Do we? Maybe (ask a

physicist), but, as a practical matter, we currently don’t.
Maybe we should consider a proof. Can we prove the above?
One answer might be: “of course, multiplication distributes over addition.”
In ACL2s, the conjecture turns out to be true

(property (x y z :rational)

(= (* x (+ y z))

(+ (* x y) (* x z))))

This is pretty amazing because a proof gives us a finite way of running an infinite number
of examples. That’s the power of logic and mathematics.

When ACL2s proves this theorem, is it thinking?

The question of whether Machines Can Think ... is about as relevant as the
question of whether Submarines Can Swim.

Edsger W. Dijkstra: EWD898, 1984

See the EWD archives at the University of Texas at Austin.
Here is another example

(definec lst-rev (x :tl) :tl

(match x

(nil nil)

((f . r) (app (lst-rev r) (list f)))))

(definec del (a :all X :tl) :tl

(match x

(nil nil)

((!a . r) r)

((f . r) (cons f (del a r)))))

Conjecture 14

(tlp x)

⇒
(in a x) ⇒ (! (in a (del a x)))
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Using induction (something we will describe later), the above conjecture leads to the
following proof obligation:

(^ (=> (tlp x)

(=> (endp x)

(=> (in a x)

(! (in a (del a x))))))

(=> (tlp x)

(=> (^ (consp x)

(== a (car x)))

(=> (in a x)

(! (in a (del a x))))))

(=> (tlp x)

(=> (^ (consp x)

(!= a (car x))

(=> (tlp (cdr x))

(=> (in a (cdr x))

(! (in a (del a (cdr x)))))))

(=> (in a x)

(! (in a (del a x)))))))

Is this true? If so, give a proof. Is it false? If so, exhibit a counterexample.
Try this before reading further.
Conjecture 14 is false, e.g., consider

(let ((x ’(1 1))

(a 1))

. . .)

where . . . in the above let is Conjecture 14.
What about the following conjecture?

Conjecture 15

(tlp x)

⇒
(in a x) ⇒ (in a (app x y))

Which by induction leads to the following proof obligation:

(^ (=> (tlp x)

(=> (endp x)

(=> (in a x)

(in a (app x y)))))

(=> (tlp x)

(=> (^ (consp x)

(== a (car x)))

(=> (in a x)

(in a (app x y)))))

(=> (tlp x)
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(=> (^ (consp x)

(!= a (car x))

(=> (tlp (cdr x))

(=> (in a (cdr x))

(in a (app (cdr x) y)))))

(=> (in a x)

(in a (app x y))))))

Is this true? If so, give a proof. Is it false? Is so, exhibit a counterexample.
Try this before reading further.
This conjecture fails contract checking. After contract completion, it is true and you

should be able to prove it by breaking Conjecture 15 into three parts and proving each in
turn.

When reasoning about programs, it is often useful to decompose a proof into parts, so
we introduce the decomposition proof technique.

Decomposition: If φ1, . . . , φn are formulas then φ1∧· · ·∧φn is valid iff all of φ1, . . . , φn
are valid.

Decomposition allows us to break up a proof of conjunction into a proof of its parts. To
see why this is sound, note that from propositional logic (φ1 ∧ · · · ∧ φn) ⇒ φi for all i s.t.
1 ≤ i ≤ n. Similarly, if each of φ1, . . . , φn are valid, so is their conjunction.

Proofs of the three parts appear in Figures 4.1, 4.2 and 4.3. These proofs highlight the
proof format we use when writing proofs on a computer. If we are writing proofs with paper
and pencil, we will follow a similar proof format, but we will typically not explicitly write
the exportation, contract completion and goal steps.

The proof of the first part, in Figure 4.1, shows that it is possible for us to prove a
theorem in the context, if we can derive nil, because nil implies anything. The “QED”
indicates the end of a proof and comes from the Latin Quod Erat Demonstrandum, which
means “that which was to be demonstrated.”

The proof of the second part, in Figure 4.2, shows that the Derived Context section of the
proof is optional. In fact, if no exportation is possible, the Exportation section is optional.
If no contract completion is needed, then the Contract Completion section is optional. If we
derive nil, even the Goal and Proof sections are optional.

The proof of the third part, in Figure 4.3 includes all possible sections that we currently
have available (more sections will be introduced later). This proof also provides an example
of nested implications. Notice that the fourth top-level hypothesis in the Exportation section
has to remain an implication because exportation does not allow us to take its hypotheses
and make them top-level hypotheses. Make sure you understand this! However, we did use
exportation to simplify the fourth top-level hypothesis, so always apply exportation as much
as possible everywhere you can, not just at the top level. During the exportation step, we
allow any propositional simplification, as long as the resulting formula does not allow any
further exportation simplifications.

When we have nested implications, as we do in C5, one of the goals when constructing
the derived context is to get our hands of the consequent of such implications. The proof
in Figure 4.3 shows an example of that. The idea is to establish all the hypotheses of C5
(D1 and D2 in our example) and to then use Modus Ponens (MP) to obtain the conclusion
(D3). The conclusion is typically what we need in the proof.
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Conjecture 15-part-1:

(=> (tlp x)

(=> (endp x)

(=> (in a x)

(in a (app x y)))))

Exportation:

(=> (^ (tlp x)

(endp x)

(in a x))

(in a (app x y)))

Contract Completion:

(=> (^ (tlp x)

(tlp y)

(endp x)

(in a x))

(in a (app x y)))

Context:

C1. (tlp x)

C2. (tlp y)

C3. (endp x)

C4. (in a x)

Derived Context:

D1. (== x nil) { C1, C3, Def tlp }
D2. nil { Def in, C4, D1 }

QED

Figure 4.1: Proof format example using only context
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Conjecture 15-part-2:

(=> (tlp x)

(=> (^ (consp x)

(== a (car x)))

(=> (in a x)

(in a (app x y)))))

Exportation:

(=> (^ (tlp x)

(consp x)

(== a (car x))

(in a x))

(in a (app x y)))

Contract Completion:

(=> (^ (tlp x)

(tlp y)

(consp x)

(== a (car x))

(in a x))

(in a (app x y)))

Context:

C1. (tlp x)

C2. (tlp y)

C3. (consp x)

C4. (== a (car x))

C5. (in a x)

Goal: (in a (app x y))

Proof:

(in a (app x y))

= { Def app, C1, C3 }

(in a (cons (car x) (app (cdr x) y)))

= { Def in, car-cdr axioms, C3 }

(v (== a (car x)) (in a (app (cdr x) y)))

= { C4, PL }

t

QED

Figure 4.2: Proof format with no derived context
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Conjecture 15-part-3:

(=> (tlp x)

(=> (^ (consp x)

(!= a (car x))

(=> (tlp (cdr x))

(=> (in a (cdr x))

(in a (app (cdr x) y)))))

(=> (in a x)

(in a (app x y)))))

Exportation:

(=> (^ (tlp x)

(consp x)

(!= a (car x))

(=> (^ (tlp (cdr x))

(in a (cdr x)))

(in a (app (cdr x) y)))

(in a x))

(in a (app x y)))

Contract Completion:

(=> (^ (tlp x)

(tlp y)

(consp x)

(!= a (car x))

(=> (^ (tlp (cdr x))

(in a (cdr x)))

(in a (app (cdr x) y)))

(in a x))

(in a (app x y)))

Context:

C1. (tlp x)

C2. (tlp y)

C3. (consp x)

C4. (!= a (car x))

C5. (=> (^ (tlp (cdr x)) (in a (cdr x)))

(in a (app (cdr x) y)))

C6. (in a x)

Derived Context:

D1. (tlp (cdr x)) { Def tlp, C1, C3 }
D2. (in a (cdr x)) { Def in, C6, C3, C4 }
D3. (in a (app (cdr x) y)) { C5, D1, D2, MP }

Goal: (in a (app x y))

Proof:

(in a (app x y))

= { Def app, C1, C3 }

(in a (cons (car x) (app (cdr x) y)))

= { Def in, car-cdr axioms, C3 }

(v (== a (car x)) (in a (app (cdr x) y)))

= { D3, PL }

t

QED

Figure 4.3: Proof format with nested implications
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4.7 Exercises

Exercise 4.7 Use definec to define a function del-all that given a of type :all and X

of type :tl deletes all occurrences of a from X.
Prove the following conjectures (which will require contract completion).

Conjecture del-all-1:

(=> (endp x) (! (in a (del-all a x))))

Conjecture del-all-2:

(=> (consp x)

(=> (== a (car x))

(=> (=> (tlp (cdr x))

(! (in a (del-all a (cdr x)))))

(! (in a (del-all a x))))))

Conjecture del-all-3:

(=>

(consp x)

(=>

(!= a (car x))

(=> (=> (tlp (cdr x))

(! (in a (del-all a (cdr x)))))

(! (in a (del-all a x))))))

Consider the definition of nodups, a function that checks is a true-list has no duplicate
elements.

(definec nodups (l :tl) :bool

(v (endp l)

(^ (! (in (car l) (cdr l)))

(nodups (cdr l)))))

The function num-unique determines how many unique elements a true-list contains.

(definec num-unique (l :tl) :nat

(cond ((endp l) 0)

((in (car l) (cdr l))

(num-unique (cdr l)))

(t (+ 1 (num-unique (cdr l))))))

Exercise 4.8 Prove the following claim. Use propositional logic to break the claim into
cases.

(=> (tlp l)

(=> (v (endp l)

(^ (! (endp l))

(in (car l) (cdr l))

(=> (tlp (cdr l))

(<= (num-unique (cdr l))
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(llen (cdr l)))))

(^ (! (endp l))

(! (in (car l) (cdr l)))

(=> (tlp (cdr l))

(<= (num-unique (cdr l))

(llen (cdr l))))))

(<= (num-unique l)

(llen l))))

Exercise 4.9 Prove the following claim. Use propositional logic to break the claim into
cases.

(=> (^ (tlp l)

(nodups l))

(^ (=> (endp l)

(= (num-unique l) (llen l)))

(=> (^ (! (endp l))

(=> (^ (tlp (cdr l))

(nodups (cdr l)))

(= (num-unique (cdr l))

(llen (cdr l)))))

(= (num-unique l) (llen l)))))

Exercise 4.10 You are given the following lemma.

(=> (tlp l)

(<= (num-unique l) (llen l)))

Prove the following claim. Use propositional logic to break the claim into cases.

(^ (=> (^ (tlp l) (endp l))

(== (= (num-unique l) (llen l))

(nodups l)))

(=> (^ (tlp l)

(! (endp l))

(in (car l) (cdr l))

(=> (tlp (cdr l))

(== (= (num-unique (cdr l))

(llen (cdr l)))

(nodups (cdr l)))))

(== (= (num-unique l) (llen l))

(nodups l)))

(=> (^ (tlp l)

(! (endp l))

(! (in (car l) (cdr l)))

(=> (tlp (cdr l))

(== (= (num-unique (cdr l))

(llen (cdr l)))
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(nodups (cdr l)))))

(== (= (num-unique l) (llen l))

(nodups l))))

Exercise 4.11 You are given the following lemma.

(=> (^ (tlp x) (tlp y))

(== (in a (app x y))

(v (in a x) (in a y))))

Prove the following claim. Use propositional logic to break the claim into cases.

(^ (=> (^ (tlp x) (tlp y))

(=> (endp x)

(<= (num-unique (app x y))

(+ (num-unique x) (num-unique y)))))

(=> (^ (tlp x) (tlp y))

(=> (consp x)

(=> (=> (tlp (cdr x))

(<= (num-unique (app (cdr x) y))

(+ (num-unique (cdr x)) (num-unique y))))

(<= (num-unique (app x y))

(+ (num-unique x) (num-unique y)))))))

Exercise 4.12 You are given the following lemma.

(=> (^ (tlp x) (tlp y))

(== (in a (app x y))

(v (in a x) (in a y))))

Prove the following claim. Use propositional logic to break the claim into cases.

(^ (=> (^ (tlp x) (endp x))

(== (in a (lst-rev x)) (in a x)))

(=> (^ (tlp x)

(! (endp x))

(=> (tlp (cdr x))

(== (in a (lst-rev (cdr x)))

(in a (cdr x)))))

(== (in a (lst-rev x)) (in a x))))

Exercise 4.13 You are given the following lemmas.

(=> (^ (tlp x)

(tlp y))

(= (num-unique (app x y))

(num-unique (app y x))))

(=> (tlp x)

(== (in a (lst-rev x))

(in a x)))
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Prove the following claim. Use propositional logic to break the claim into cases.

(^ (=> (^ (tlp x) (endp x))

(= (num-unique (lst-rev x))

(num-unique x)))

(=> (tlp x)

(=> (^ (consp x)

(in (car x) (cdr x))

(=> (tlp (cdr x))

(= (num-unique (lst-rev (cdr x)))

(num-unique (cdr x)))))

(= (num-unique (lst-rev x))

(num-unique x))))

(=> (^ (tlp x)

(consp x)

(=> (^ (! (in (car x) (cdr x)))

(=> (tlp (cdr x))

(= (num-unique (lst-rev (cdr x)))

(num-unique (cdr x)))))

(= (num-unique (lst-rev x))

(num-unique x))))))
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Definitions and Termination

5.1 The Definitional Principle

We’ve already seen that when you define a function, say

(definec f (x :tx) :tf

:input-contract ic
:output-contract oc
body)

that ACL2s adds the definitional axiom

(txp x) ∧ ic ⇒ (f x) = body

and the function contract theorem

(txp x) ∧ ic ⇒ (tfp (f x)) ∧ oc

We now more carefully examine what happens when you define functions.
The fundamental definitions and concepts of this chapter are somewhat easier to explain

using defunc, as opposed to definec. Furthermore, since definec forms can be turned
into defunc forms by including the type specifiers in the input and output contracts, it is
enough to only consider defunc forms. However, we will use definec when considering
specific examples.

First, let’s see why we have to examine anything at all.
In most languages, one is allowed to write functions such as the following:

(definec f (x :nat) :nat

(1+ (f x)))

This is a nonterminating recursive function.
Suppose we add the definitional axiom:

(natp x) ⇒ (f x) = (1+ (f x)) (5.1)

and the function contract theorem:

(natp x) ⇒ (natp (f x)) (5.2)

This is unfortunate because we can now prove nil in ACL2s. If nil is a theorem, that
means that the ACL2s logic is unsound. Here is the proof of unsoundness. This is an
interesting proof that just uses the derived context.

D1. (f 1) = 1 + (f 1) { Def f }
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D2. 0 = 1 { D1, Contract f, Arith }

D3. nil { D2, evaluation }

As we have seen, once we have nil, we can prove anything. Therefore, this nontermi-
nating recursive equation introduced unsoundness. The point of the definitional principle in
ACL2s is to make sure that new function definitions do not render the logic unsound. For
this reason, ACL2s does not allow you to define nonterminating functions in :logic mode
using defunc and definec, unless you explicitly allow such definitions using methods we
do not consider in this chapter (but which were described in Chapter 2).

Almost all the programs you will write are expected to terminate: given some inputs,
they compute and return an answer. Therefore, you might expect any reasonable language to
detect nonterminating functions. However, no widely used language provides this capability,
because checking termination is undecidable: no algorithm can always correctly determine
whether a function definition will terminate on all inputs that satisfy the input contract. We
will provide a careful proof of this, but, assuming the undecidability results in Chapter 4,
you should be able to prove that checking termination is undecidable.

Exercise 5.1 Show that checking termination of a proposed ACL2s function definition is
undecidable. Assume the undecidability results in Chapter 4.

Hint: Prove that if termination was decidable, then we could use it to prove that the
satisfiability problem for arithmetic expressions over the integers is decidable, thereby con-
tradicting the results in Chapter 4.

We note that there are cases in which nontermination is desirable. In particular, reactive
systems, which include operating systems and communication protocols, are intentionally
nonterminating. For example, TCP (the Transmission Control Protocol) is used by appli-
cations to communicate on the Internet. TCP provides a communication service that is
expected to always be available, so the protocol should not terminate. Does that mean that
termination is not important for reactive systems? No, because reactive systems tend to
have an outer, nonterminating loop consisting of terminating actions. Can we reason about
reactive systems in ACL2s? Yes, but how that is done will not be addressed in this chapter.

Question: does every nonterminating recursive equation introduce unsoundness?
Consider:

(definec f (x :all) :all

(f x))

This leads to the definitional axiom:

(f x) = (f x)

This cannot possibly lead to unsoundness since it follows from the reflexivity of equality.
Question: can terminating recursive equations introduce unsoundness?
Consider:

(definec f (x :all) :all

y)

This leads to the definitional axiom:

(f x) = y (5.3)



Definitions and Termination 115

Which causes problems, e.g.,
t

= { Instantiation of (5.3) with ((y t) (x 0)) }

(f 0)

= { Instantiation of (5.3) with ((y nil) (x 0)) }

nil

We got into trouble because we allowed a “global” variable. It will turn out that, modulo
contracts, we can rule out bad terminating equations with some simple checks.

So, modulo some checks we are going to get to soon, terminating recursive equations do
not introduce unsoundness, because we can prove that if a recursive equation can be shown
to terminate then there exists a function satisfying the equation.

The above discussion should convince you that we need a mechanism for making sure
that when users add axioms to ACL2s by defining functions, then the logic stays sound.

That’s what the definitional principle does.
Definitional Principle for ACL2s
The definition

(defunc f (x1 . . . xn)
:input-contract ic
:output-contract oc
body)

is admissible provided:

1. f is a new function symbol, i.e., there are no other axioms about it. Functions are
admitted in the context of a history, a record of all the built-in and defined functions
in a session of ACL2s.

Why do we need this condition? Well, what if we already defined app? Then we
would have two definitions. What about redefining functions? That is not a good
idea because we may already have theorems proven about app. We would then have
to throw them out and any other theorems that depended on the definition of app.
ACL2s allows regular users to undo, but not redefine.

2. The xi are distinct variable symbols.

Why do we need this condition? If the variables are the same, say (defunc f (x x)

. . .), then what is the value of x when we expand(f 1 2)?

3. body is a term, possibly using f recursively as a function symbol, mentioning no
variables freely (see the discussion of what a free variable is in Chapter 4) other than
the xi;

Why? Well, we already saw that global variables can lead to unsoundness. When we
say that body is a term, we mean that it is a legal expression in the current history.

4. The function is terminating. This means that if you evaluate the function on any inputs
that satisfy the input contract, the function will terminate. As we saw, nontermination
can lead to unsoundness.

There are also two other conditions that I state separately.
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5. ic ⇒ oc is a theorem.

6. The body contracts hold under the assumption that ic holds.

If admissible, the logical effect of the definition is to:

1. Add the Definitional Axiom for f: ic ⇒ [(f x1 . . . xn) = body].

2. Add the Contract Theorem for f: ic ⇒ oc.

But, how do we prove termination?
A very simple first idea is to use what are called measure functions. These are functions

from the parameters of the function under consideration into the natural numbers, so that
we can prove that on every recursive call the function terminates. Let’s try this with ap.

(definec ap (x y :tl) :tl

(if (endp x)

y

(cons (car x) (ap (cdr x) y))))

What is a measure function for ap?
How about the length of x? That works, i.e., (len x) is a measure function for ap.
Measure Function Definition: m is a measure function for f if all of the following

hold.

1. m is an admissible function defined over the parameters of f;

2. m has the same input contract as f;

3. m has an output contract stating that it always returns a natural number; and

4. on every recursive call of f, m applied to the arguments to that recursive call decreases
with respect to <, under the conditions that led to the recursive call.

Here is a measure function for ap:

(definec m (x y :tl) :nat

(len x))

If you try admitting m in ACL2s, you get an error because y is not used in the body of
m. Here is one way to tell ACL2s to allow such definitions.

(definec m (x y :tl) :nat

(declare (ignorable y))

(len x))

The above measure function is non-recursive, so it is easy to admit. Notice that we do
not use the second parameter. That is fine and it just means that the second parameter is
not needed for the termination argument.

The astute reader may be wondering if is possible to ease the restriction that m is defined
over the parameters of f and only require that m is defined over a subset of the parameters
of f. That is possible; stay tuned.

Next, we have to prove that m decreases on all recursive calls of ap, under the conditions
that led to the recursive call. Since there is one recursive call, we have to show:
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(=> (^ (tlp x)

(tlp y)

(! (endp x)))

(< (m (rest x) y) (m x y)))

which is equivalent to:

(=> (^ (tlp x)

(tlp y)

(! (endp x)))

(< (len (rest x)) (len x)))

which is a true statement. How do we prove such statement? Using equational reasoning,
of course.

Wait, what about len? How do we know that len is terminating? We have an axiom
that the following function is admissible, hence terminating.

(definec cons-size (x :all) :nat

(if (consp x)

(+ 1 (cons-size (car x)) (cons-size (cdr x)))

0))

This axiom tells us that cons trees, and therefore lists, are finite! In Lisp you can actually
have circular trees and lists, in which case cons-size would be nonterminating, but that is
not possible in ACL2s! We can use cons-size as the measure function for len.

More examples:

(definec rv (x :tl) :tl

(if (endp x)

nil

(ap (rv (rest x)) (list (first x)))))

Is this admissible? It depends if we defined ap already. Suppose ap is defined as above.
What is a measure function?

len.
What about (head and tail were defined in Chapter 2):

(definec drop-last (x :tl) :tl

(if (= (len x) 1)

nil

(cons (head x) (drop-last (tail x)))))

No. We cannot prove that it is nonterminating, e.g., when x is nil, what is (tail x)?
The real issue here is that we are analyzing a function that has body contract violations,
e.g., when x is nil, our function tries to evaluate (head x). What about this version? Is
it admissible?

(definec drop-last (x :tl) :tl

(if (= (len x) 1)

nil

(cons (first x) (drop-last (rest x)))))

No. In fact it is nonterminating. Why?
We can fix that in several ways.
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Exercise 5.2 Define drop-last using a data-driven definition.

Here is the solution to the above exercise.

(definec drop-last (x :tl) :tl

(cond ((endp x) nil)

((endp (rest x)) nil)

(t (cons (first x) (drop-last (rest x))))))

An equivalent definition is the following.

(definec drop-last (x :tl) :tl

(if (endp (rest x))

nil

(cons (first x) (drop-last (rest x)))))

Why does the above pass contract checking?

Exercise 5.3 Find a measure function for drop-last and prove that it works.

What about the following function?

(definec prefixes (l :tl) :tl

(if (endp l)

’( () )

(cons l (prefixes (drop-last l)))))

Is prefixes admissible?
Yes. It satisfies the conditions of the definitional principle; in particular, it terminates

because we are removing the last element from l.

Exercise 5.4 What is a measure function for prefixes? Try to prove that it is a measure
function. What happened?

Does the following satisfy the definitional principle?

(definec f (x :int) :int

(if (zip x)

0

(1+ (f (1- x)))))

No. It does not terminate.
What went wrong?
Maybe we got the input contract wrong. Maybe we really wanted natural numbers.

(definec f (x :nat) :int

(if (zp x)

0

(1+ (f (1- x)))))

Another way of thinking about this is: What is the largest type that is a subtype of
integer for which f terminates? Or, we could ask: What is the largest type for which f

terminates?
But, maybe we got the input contract right. Then we used the wrong data definition:

(definec f (x :int) :int
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(cond ((zip x) 0)

((> x 0) (1+ (f (1- x))))

(t (1+ (f (1+ x))))))

Now f computes the absolute value of x (in a very slow way).
The other thing that should jump out at you is that the output contract could be (natp

(f x)) for all versions of f above.

5.2 Admissibility of common recursion schemes

We examine several common recursion schemes and show that they lead to admissible func-
tion definitions.

The first recursion scheme involves recurring down a list.

(defunc f (x1 . . . xn)
:input-contract (∧ . . . (tlp xi) . . .)
:output-contract . . .
(if (endp xi)

. . .
(. . . (f . . . (rest xi) . . .) . . .)))

The above function has n parameters, where the ith parameter, xi, is a list. The function
recurs down the list xi. The . . .’s in the body indicate non-recursive, well-formed code, and
(rest xi) appears in the ith position.

We can use (len xi) as the measure for any function conforming to the above scheme:

(defunc m (x1 . . . xn)
:input-contract (∧ . . . (tlp xi) . . .)
:output-contract (natp (m x1 . . . xn))
(len xi))

That m is a measure function is obvious. The non-trivial part is showing that

(tlp xi) ∧ (! (endp xi))

⇒ (len (rest xi)) < (len xi)

which is easy to see.
So, this scheme is terminating. This is why all of the code you wrote in your introductory

programming class that was based on the list data definition terminates.
We can generalize the above scheme, e.g., consider:

(defunc f (x1 x2)

:input-contract (∧ (tlp x1) (tlp x2))

:output-contract (tlp (f x1 x2))

(cond ((endp x1) x2)

((endp x2) x1)

(t (list (f (rest x1) (rest x2))

(f (rest x1) (app x1 x2 x2))))))

We now have two recursive calls and two base cases. Nevertheless, the function termi-
nates for the same reason: len decreases.

(defunc m (x1 x2)
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:input-contract (∧ (tlp x1) (tlp x2))

:output-contract (natp (m x1 x2))

(len x1))

All recursive calls lead to the same proof obligation:

(tlp x1) ∧ (! (endp x1)) ∧ (! (endp x2))

⇒ (len (rest x1)) < (len x1)

Thinking in terms of recursion schemes and templates is good for beginners, but what
really matters is termination. That is why recursive definitions make sense.

Another interesting recursion scheme is the following.

(defunc f (x1 . . . xn)
:input-contract (∧ . . . (natp xi) . . .)
:output-contract . . .
(if (zp xi)

. . .
(. . . (f . . . (1- xi) . . .) . . .)))

The above is a function of n parameters, where the ith parameter, xi, is a natural number.
The function recurs on the number xi. The . . .’s in the body indicate non-recursive, well-
formed code, and (1- xi) appears in the ith position.

We can use xi as the measure for any function conforming to the above scheme:

(defunc m (x1 . . . xn)
:input-contract (∧ . . . (natp xi) . . .)
:output-contract (natp (m x1 . . . xn))
xi)

That m is a measure function is obvious. The non-trivial part is showing that

(natp xi) ∧ (! (zp xi)) ⇒ (1- xi) < xi

which is easy to see.
So, this scheme is terminating. This is why all of the code you wrote in your beginning

programming class that was based on natural numbers terminates.

Exercise 5.5 We can similarly construct a recursion scheme for integers. Do it.

A recursion scheme for traversing cons trees is the following.

(defunc f (x1 . . . xn)
:input-contract (∧ . . . (allp xi) . . .)
:output-contract . . .
(if (atom xi)

. . .
(. . . (f . . . (car xi) . . .) . . .
. . . (f . . . (cdr xi) . . .) . . .)))

The above function has n parameters, where the ith parameter, xi, can be anything.
The function recurs down the car and cdr of xi, if it is a cons. The . . .’s in the body
indicate non-recursive, well-formed code, and both (car xi) and (cdr xi) appear in the
ith position.
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We can use (cons-size xi) as the measure for any function conforming to the above
scheme:

(defunc m (x1 . . . xn)
:input-contract (∧ . . . (allp xi) . . .)
:output-contract (natp (m x1 . . . xn))
(cons-size xi))

That m is a measure function is obvious. The non-trivial part is proving the following
two simple claims.

(! (atom xi)) ⇒ (cons-size (car xi)) < (cons-size xi)

(! (atom xi)) ⇒ (cons-size (cdr xi)) < (cons-size xi)

We can generalize the above scheme, in the way we generalized the recursion scheme for
lists.

5.3 Complexity Analysis

Remember “big-Oh” notation? It is connected to termination. How?
Well if the running time for a function is O(n2), say, then that means that (roughly):

1. the function terminates; and

2. there is a constant c s.t. the function terminates “within” c · n2 steps, where n is the
“size” of the input (the definition of “big-Oh” is a bit more complicated).

Thus, big-Oh analysis is just a refinement of termination, where in addition to being
interested in whether a function terminates, we also want an upper bound on how long it
will take for the function to terminate.

Exercise 5.6 Claim: Let f be a function that has one argument, n, that is a nat. If a
measure for f is n, then f is a linear time function. Prove or disprove before reading
further.

Consider:

(definec-no-test fib (n :nat) :nat

(if (< n 2)

n

(+ (fib (1- n))

(fib (- n 2)))))

The definec-no-test form is similar to a definec form, except that it does not perform
any testing when it tries to admit fib.

Exercise 5.7 A measure function for fib is one that just returns n. Prove that this is a
measure function.

The measure function in the above exercise tells us that there is no sequence of fib calls
of length greater than n, but we can have a tree of calls, which we do in the case of fib, so
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even with such a simple measure function, the running time can be exponential. Thus the
claim in Exercise 5.6 does not hold.

It should now be clear that a measure function does not count how many times a function
is called recursively! A measure function tells us close to nothing about the running time of
functions. To make this even clearer, consider the following definition.

(definec-no-test f (n :nat) :nat

(fib n))

The function that always returns 0 is a measure function for f, yet f takes exponential
time.

Given the above discussion, there is no reason to make measure functions as small as
possible. The goal is use measure functions that are easy to define and easy to reason about.

Let us test fib to make it clear that it really is not a linear-time function. After admitting
the function here are some timing results.

(time$ (fib 40)) ; ∼1 seconds = (fib 2) seconds

(time$ (fib 41)) ; ∼2 seconds = (fib 3) seconds

(time$ (fib 42)) ; ∼3 seconds = (fib 4) seconds

(time$ (fib 43)) ; ∼5 seconds = (fib 5) seconds

(time$ (fib 44)) ; ∼8 seconds = (fib 6) seconds

What if I tried this?

(time$ (fib 200))

This would take about (fib 162) seconds, which is 3210056809456107725247980776292056
seconds, which is more than 1026 years, which is more than 1015 times the age of our universe
(from the big bang until now).

You may wonder “How does he even know that, since computing (fib 162) requires
about (fib 124) seconds to compute, which is 36726740705505779255899443 seconds, which
is more than 1018 years, which is more than 107 times the age of our universe.” Now, I’m
wondering “How does the reader even know that, since computing (fib 124) requires . . ..”
Enough of that; let’s get back to reasoning about programs.

Well, ACL2s has a very nice feature, which allows you to memoize functions. This gives
you language support for dynamic programming, a key idea in algorithms. Memoization
works by recording the values of fib that you compute in a table, so you never have to
compute fib on the same value more than once.

After defining fib, you can tell ACL2s to memoize the function with the following
command.

(memoize ’fib)

Now, you can run fib on large numbers quickly. For example, the following form com-
pletes in 0 seconds.

(time$ (fib 200)) ; Much faster than universe-scale computations!

5.4 Undecidability of the Halting Problem

Turing’s result that termination is undecidable is an amazing, fundamental result that high-
lights the limits of computation. In this section, we present a proof of the undecidability of
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the halting problem.
Recall that a problem which has a “yes” or “no” answer is a decision problem and a

decision procedure is an algorithm that solves a decision problem. The algorithm has to
terminate and it has to correctly solve the decision problem. If there is a decision procedure
for a decision problem, then we say that the problem is decidable. We showed that the
validity of propositional formulas is a decidable problem and mentioned, but did not prove,
that the admissibility of ACL2s functions is an undecidable problem. Now, we will see our
first proof of undecidability.

We have seen that it would very useful if languages other than ACL2s could help us
determine whether programs are terminating. Ideally, we want a decision procedure for
termination: an algorithm that given a program returns “yes” iff that program terminates
on all legal inputs and returns “no” otherwise. This is the halting problem. Turing proved
that it is undecidable, i.e., no algorithm exists that decides termination. You may wonder
how to reconcile this with the termination analysis ACL2s performs. ACL2s will admit
functions if it can prove that they terminate. By Turing’s result, there must exist programs
that are terminating, but which ACL2s will not be able to admit. That indeed is the case.
When ACL2s is unable to prove termination, user input is required in the form of a measure
function, a proof sketch, etc. Since almost no mainstream language includes a logic and a
theorem prover, such languages do not provide a means for checking termination.

5.4.1 Proof by Contradiction

We will use a proof technique referred to as proof by contradiction or reductio ad absurdum,
which is Latin for “reduction to the absurd.” Proof by contradiction is just a “cheap” (i.e.,
simple) propositional trick.

Proof by contradiction: Let’s say that we are trying to prove the validity of the
formula:

φ1 ∧ · · · ∧ φn ⇒ φ

We can do this by assuming the negation of the consequent and deriving a contradiction,
i.e., we instead prove:

φ1 ∧ · · · ∧ φn ∧ ¬φ ⇒ false

Note that these two statements are equivalent by propositional logic. To see this, recall
negate and swap:

A ∧B ⇒ C ≡ A ∧ ¬C ⇒ ¬B

Then apply the above to
φ1 ∧ · · · ∧ φn ∧ true ⇒ φ

Here is a great quote about proof by contradiction from Godfrey Harold Hardy’s A
Mathematician’s Apology (1940).

Reductio ad absurdum, which Euclid loved so much, is one of a mathematician’s
finest weapons. It is a far finer gambit than any chess gambit: a chess player
may offer the sacrifice of a pawn or even a piece, but a mathematician offers the
game.
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5.4.2 Diagonalization

Our proof will be based on diagonalization, a powerful proof technique. Diagonalization was
introduced by Cantor in the late 1800’s to show that there is an infinite tower of infinities.

One of the key theorems Cantor proved states that the cardinality (size) of the power
set of the natural numbers is greater than the cardinality of the set of natural numbers. We
use ω to denote the set of natural numbers, as is standard in set-theory. The cardinality of
set X is denoted by |X |. It also turns out that ω is a cardinal number, a number denoting
cardinality, and it is the first infinite cardinal number (natural numbers are also cardinal
numbers), so |ω| = ω. If the size of a set is ≤ ω then it is finite or its size is ω; we call such
sets countable. We use 2X to denote the powerset of X .

If two sets have the same cardinality, there is a bijection between them. A bijection
between sets X and Y is a (total) function from X to Y such that every element in Y is
related to exactly one element in X :

for all y ∈ Y : |{x ∈ X : f(x) = y}| = 1

With this definition (which works not only for finite sets, but also for infinite sets), notice
that the set of integers is countable, i.e., it has the same size as ω. To show this, we exhibit
an appropriate bijection: f(i) = 2i if i ≥ 0 and f(i) = −(2i+ 1) otherwise.

Exercise 5.8 Show that the set of even natural numbers is countable.

Exercise 5.9 Show that the set X = {(a, b) : a, b ∈ ω} is countable.

Exercise 5.10 Show that the set of rational numbers (including negative rational numbers)
is countable.

Exercise 5.11 Show that the union of a countable set of countable sets is countable.

Cantor’s theorem can be stated succinctly as |2X | > |X |. Instead of proving the general
version of Cantor’s theorem, we will instead use Cantor’s diagonalization proof technique
to show that the size of the set of real numbers between 0 and 1 is strictly greater than the
size of the natural numbers.

First, we start by assuming the negation of the conjecture. Since our set of reals is
infinite, its size has to be greater than or equal to ω. So we can assume that the size of
the set of reals is exactly ω. This means that there is a bijection, say f , from ω to the
reals between 0 and 1. Any such bijection can be turned into an infinite (but countable)
table, where row r corresponds to f(r), the rth real number. In more detail, row r contains
the decimal expansion of f(r), where cell r, c contains the cth decimal digit of f(r), which
we also denote as f(r)c. You can imagine that there is a “.” before every row (since the
numbers are between 0 and 1).

0 1 2 ...

0 f(0)0 f(0)1 f(0)2 ...

1 f(1)0 f(1)1 f(1)2 ...

2 f(2)0 f(2)1 f(2)2 ...

... ... ...
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We now derive a contradiction by showing that a number that should be in the table is
not. How do we do that? We define a real number, d, that differs from every number in the
table. In order for d to differ from f(0), it only needs to differ in one column, i.e., for one of
the digits in its decimal expansion. The idea is to define d so that it differs on the diagonal,
i.e., di 6= f(i)i and we can do that by defining di = 5 if f(i)i 6= 5 and di = 4 otherwise.
Note that we used 4 and 5 to avoid some tricky cases, e.g., recall that .0999... = .1000....
But now, d is not in the table but it is a real number between 0 and 1 and we have a
contradiction and that means that our assumption that there is a bijection must be wrong.
Hence the cardinality of the real numbers between 0 and 1 is strictly greater than ω.

Exercise 5.12 Use diagonalization to show that ω < |2w|, i.e., that the cardinality of the
set of natural numbers is strictly less than the cardinality of the powerset of natural numbers.

Exercise 5.13 Use diagonalization to show that |S| < |2S|, i.e., that the cardinality of any
set is strictly less than the cardinality of its powerset.

This is a simple example of diagonalization. We will see a more complex use of diago-
nalization shortly.

5.4.3 Basic Properties of Programs

We start with a few basic observations about programs that will help us with the proof.
The first observation is that we can enumerate all programs. That means that we can

create a sequence (a list) indexed by the natural numbers in such a way that every program
appears exactly once in the sequence. In fact, there is a computable function f that given
a natural number, i, returns the ith program. Let us say that we want to enumerate C
programs. We can define f as follows: on input i, consider the binary representation of
C programs and iterate over all bit vectors of length 1, 2, 3, . . . in order; for each such bit
vector, see if it compiles using GCC (or whatever compiler you want) and keep going until
you find the ith bitvector that compiles; that is the ith program. So the cardinality of the
set of programs is ω, the cardinal number corresponding to the size of the set of natural
numbers.

The second observation is that we can treat all inputs and outputs as natural numbers
(say by thinking of them as bit-vectors). So, a program is just a function from natural
numbers to natural numbers. Since programs may diverge (fail to terminate) on some
inputs, a program is really a partial function. More generally, if we want to allow non-
deterministic behavior then a program is a relation over the natural numbers; while we
get similar results in this case, for simplicity’s sake, we will only consider deterministic
programs.

With only these observations and some basic counting results, we can already prove
that there are undecidable problems. Let us restrict ourselves to decision problems: a
decision problem is given as input a natural number and returns 1 or 0. An example of a
decision problem is the halting problem, where the input encodes a program and 1 means
the program is terminating and 0 means there is at least one input to the program that
leads to nontermination. How many such functions are there? There are 2ω such functions
where ω is the size of the natural numbers. Cantor showed that 2ω > ω. In fact 2ω ≫ ω
e.g., 2ω − ω = 2ω. Therefore, most decision problems are undecidable because the number
of programs is ω, as is the number of decision procedures, so there are way less decision
procedures than there are decision problems.
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5.4.4 Proof of the Undecidability of the Halting Problem

Our proof will be based on diagonalization. First, we start by assuming the negation of the
conjecture: the halting problem is decidable. So under this assumption, we have a program

h(i) = if Program f(i) is terminating then 1 else 0

Now imagine an infinite table where rows and columns are indexed by natural numbers
and cell r, c contains Fr(c) where Fr is F (r) and F is some function that returns a program
(not necessarily f).

0 1 2 ...

0 F0(0) F0(1) F0(2) ...

1 F1(0) F1(1) F1(2) ...

2 F2(0) F2(1) F2(2) ...

... ... ...

Next, we derive a contradiction by defining a table like the one above and showing that
a program that should be in the table is not.

Let g(0), g(1), g(2), . . . be the list of terminating program indices in order. Here is a more
rigorous definition.

g(0) = smallest i such that f(i) is terminating.

g(n+ 1) = smallest i > g(n) such that f(i) is terminating.

Notice that this is well defined because there are an infinite number of terminating
programs! Notice also that since h is decidable, g is a computable, terminating function, so
for some i we have that f(i) = g.

In the table we will use in our proof, Fr = f(g(r)).
So, every terminating function appears somewhere in the table and the table tells us

what every terminating function returns on every possible input.
Now, we are ready for our contradiction. We will define d so that it is a terminating

program (so it must be in the table), but it also differs along the diagonal, i.e., it differs
with every program in our table on at least one input.

d(n) = Fn(n) + 1

That is, to determine d(n), compute f(g(n)), which gives us the nth terminating program.
Then run that program on n and add 1 to the result. Notice that d is a terminating program!
(Because g(n) is the index of a terminating program, f(g(n)) terminates on all inputs.)

Now, since d is a terminating program there is some k for which Fk = d. But what is
d(k)? Well it should be Fk(k) (since Fk = d), but according to the definition of d, it is
Fk(k) + 1, a contradiction.

0 1 2 ...

0 F0(0) F0(1) F0(2) ... d(0) 6= F0(0)
1 F1(0) F1(1) F1(2) ... d(1) 6= F1(1)
2 F2(0) F2(1) F2(2) ... d(2) 6= F2(2)
... ... ...

... ... ... d(n) 6= Fn(n)

... ... ...
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Wait, we derived false. And, we used Fk(k) = Fk(k)+1, which is exactly the function we
showed leads to inconsistency in ACL2s when motivating the need for termination analysis!
So, is false a theorem? Of course not. What we showed is that if we assume that termination
is decidable, then we can prove false. So, termination is not decidable. This is a proof by
contradiction, a key proof technique.

Exercise 5.14 How would you write a program that checks if other programs terminate?
We just proved that there is no decision procedure for termination, so your program will
return “yes”, indicating that the input program always terminates, “no”, indicating that
the input program fails to terminate on at least one input, or “unknown”, indicating that
your program cannot determine whether the input program is terminating. A really simple
solution is to always return “unknown.” The goal is to write a program that returns as few
“unknown”s as possible.

Given the undecidability proof in this section, we know that there are terminating func-
tions for which ACL2s (or any other termination analysis engine) will fail to prove termina-
tion. However, we expect that for almost all of the programs we ask you to write in logic
mode, ACL2s will be able to prove termination automatically. If not, send email and we
will help you. That is not to say that it is hard to come up with simple functions whose
termination status is unknown. Consider the following well-known “Collatz” function. Even
after extensive effort, no one has been able to determine if it terminates or not.

(definec collatz (n :pos) :pos

(cond ((= n 1) 1)

((evenp n) (collatz (/ n 2)))

(t (collatz (1+ (* 3 n))))))

Exercise 5.15 Define a function collatz-len that given as intput n, a pos, returns a
clist, a list whose first element is the number of calls to collatz that input n gives rise to
and whose second element is a list containing the arguments to collatz that input n gives
rise to. Use the following definitions.

(defdata lpos (listof pos))

(defdata clist (list pos lpos))

Here are some tests.

(check= (collatz-len 1) ’(1 (1)))

(check= (collatz-len 8) ’(4 (8 4 2 1)))

(check= (collatz-len 13) ’(10 (13 40 20 10 5 16 8 4 2 1)))

Exercise 5.16 Define a function that given a positive integer n returns a positive integer,
say k, such that (car (collatz-len k)) = n. See Exercise 5.15.

Exercise 5.17 Define a function that given a positive integer n returns the smallest positive
integer, say k, such that (car (collatz-len k)) = n. See Exercise 5.15.

Exercise 5.18 Define a function to determine what value of n less than or equal to 232

that returns the largest number in the first element of (collatz-len n). See Exercise 5.15.
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5.4.5 Consequences of Undecidability in Philosophy and Science

The undecidability result is a major result that has consequences beyond computer science.
Humans have wondered for millennia what the limits of human cognition are. Are there
problems that are too hard for humans to solve? How do human cognition and problem-
solving capabilities compare with other animals, sentient beings or machines? These are
some of the most important philosophical questions that humanity has grappled with. What
Turing’s undecidability result shows us is that there are decision problems that cannot be
solved using a certain class of machines (computers running programs).

Are there more powerful entities in the universe (or even outside of the universe) that can
solve such decision problems? What about humans? Aren’t humans really just machines
(whose code is their DNA) that are subject to the same rules of the universe that any other
objects, beings and machines are subject to? If so, then not only do humans not have any
super-Turing capabilities, but we can build machines that can simulate humans and can
therefore do anything humans can, at least in principle.

If humans or other entities can solve undecidable decision problems, then they have
supernatural powers and are more powerful than anything bound by the rules of our universe,
assuming the universe is not radically different than our current understanding of it.

Even if there are powerful entities in or outside of the universe that can solve undecidable
decision problems, they cannot produce decision procedures that solve these undecidable
problems, because we just showed an example of a decision problem that has no decision
procedure.

If you want to say something intelligent about the limits and power of human cognition,
animal cognition, AI, any kind of machine operating in this universe, etc, in the context of
philosophy, psychology, medicine, biology, physics, etc., you have to understand undecid-
ability results.

5.5 Generalizing Measure Functions

The notion of measure functions presented in the previous sections is sufficiently powerful
to prove termination of almost all the functions a typical undergraduate computer science
student might be asked to write.

Are there functions that are known to be terminating that we cannot prove terminating
using measure functions? Try to come up with examples before reading further.

Here is an interesting example.

(definec f (x y acc :tl) :tl

(match (list x y)

((nil nil) acc)

((nil (fy . ry)) (f x ry (cons fy acc)))

(((fx . rx) nil) (f rx y (cons fx acc)))

(& (f x nil (f nil y acc)))))

This function is terminating because (+ (len x) (len y)) is decreasing. Let us try to
define a measure function and prove that it works.

(definec m (x y acc :tl) :nat

(+ (len x) (len y)))
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Consider the proof obligation for the last recursive call of f, after some simplification.

(=> (^ (tlp x)

(tlp y)

(tlp acc)

(consp x)

(consp y))

(< (m x nil (f nil y acc))

(m x y acc)))

It would be nice to expand m since we then wind up with the following proof obligation,
which is easy to discharge.

(=> (^ (tlp x)

(tlp y)

(tlp acc)

(consp x)

(consp y))

(< (len x)

(+ (len x) (len y))))

Unfortunately, in order to expand m, we need to know that the arguments to m satisfy
m’s input contract. But, how do we know that (f nil y acc) is a true-list? We have
not admitted f yet, so we do not have its contract theorem available to us. We’re stuck!
How can we get around this problem? Well, we can relax the requirement that measure
functions have to be defined over the same parameters as the function they are used to prove
terminating. If we did that, we can define m as follows.

(definec m (x y :tl) :nat

(+ (len x) (len y)))

This leads to the following proof obligation for the last recursive call of f, after some
simplification.

(=> (^ (tlp x)

(tlp y)

(tlp acc)

(consp x)

(consp y))

(< (m x nil)

(m x y)))

Now we can expand m to get the proof obligation we wanted.

(=> (^ (tlp x)

(tlp y)

(tlp acc)

(consp x)

(consp y))

(< (len x)

(+ (len x) (len y))))
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Next, consider the following definition.

(definec f (x y acc :tl) :tl

(cond ((^ (endp x) (endp y)) acc)

((endp x) (f x (rest y) (cons (first y) acc)))

((endp y) (f y x acc))

(t (f x nil (f acc nil y)))))

How do we prove that this is terminating? Try to come up with a measure function.
Here are some observations. If (endp x) and (consp y), the length of y decreases

by one on every subsequent recursive call until the function terminates; let’s call this the
first case. If (endp y) and (consp x) (the second case), the arguments are swapped and
after one step we are back in the first case. If (consp x) and (consp y) then there are
two recursive calls. After one step, the inner call gets us to the second case but with the
arguments shuffled. After one step the outer call gets us to the second case, but with y and
acc pushed into the third argument. With these considerations in mind, try to come up
with a measure function.

Here is a potential measure function.

(definec m (x y acc :tl) :nat

(cond ((^ (endp x) (endp y))

;; no recursive calls, so 0

0)

((endp x)

;; we will keep coming back to this case on recursive calls

(len y))

((endp y)

;; after one call, we get to the 1st case, with swapped args, so

(1+ (len x)))

(t

;; for the inner call an upper bound is:

;; 1+m(recursive-call) = (+ 2 (len acc))

;; for the outer call an upper bound is: (+ 2 (len x))

;; so an upper bound for both cases is:

(+ 2 (len acc) (len x)))))

Notice that we needed all three parameters. Consider the proof obligation for the outer
recursive call of last cond case. After some simplification we have the following.

(=> (^ (tlp x)

(tlp y)

(tlp acc)

(consp x)

(consp y))

(< (m x nil (f acc nil y))

(m x y acc)))

The problem is that we cannot expand (m x nil (f acc nil y)) because we do not
know that (tlp (f acc nil y)) holds since we have not admitted f. The solution is to
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change the type of acc in m to be all. This is reasonable because we only increased the
number of inputs m accepts, so m can still be used to assign a measure to any legal inputs
to f. Notice a subtle point here: during the termination proof of f, we allow terms that
mention f as a function symbol, just like we allowed this in the body of f (see the definitional
principle). With this change to m, we can now expand out the above formula and can prove
termination.

Summarizing, our generalized measure function is defined as follows.
Generalized Measure Function Definition: m is a measure function for f if all of

the following hold.

1. m is an admissible function defined over a subset of the parameters of f;

2. f’s input contract implies m’s input contract;

3. m has an output contract stating that it always returns a natural number; and

4. on every recursive call of f, m applied to the arguments to that recursive call de-
creases with respect to <, under the conditions that led to the recursive call; this proof
obligation can mention f as a function symbol, but we have no axioms constraining f.

Can we generalize this further? What do you think?
The answer is yes. One very useful generalization is to allow measure functions to

return more than natural numbers. Can we allow integers? No. Consider the following
non-terminating function.

(definec f (x :nat) :nat

(if (= x 100)

x

(f (1+ x))))

If we could use integers then here is a “measure” function.

(definec m (x nat) :int

(- 100 x))

Notice that the following is a theorem.

(=> (^ (natp x) (!= x 100))

(< (- 100 (1+ x)) (- 100 x)))

What if measure functions could return non-negative rational numbers?

(defdata nn-rat (range rational (0 <= )))

Then consider the following terminating function.

(definec f (x :rational) :rational

(if (>= x 100)

x

(f (+ x 1/100))))

If we allow measure functions to return non-negative rational numbers we have the
following “measure” function.

(definec m (x :rational) :nn-rat
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(if (>= x 100)

0

(- 100 x)))

Notice that the following is a theorem.

(=> (^ (rationalp x) (! (>= x 100)))

(< (- 100 (+ x 1/100)) (- 100 x)))

Unfortunately, using rational numbers is unsound, for reasons that Zeno of Elea under-
stood thousands of years ago!

Consider the following non-terminating function.

(definec f (x :rational) :rational

(if (<= x 0)

x

(f (/ x 2))))

We have the following “measure” function.

(definec m (x :rational) :nn-rat

x)

Notice that the following is a theorem.

(=> (^ (rationalp x) (! (<= x 0)))

(< (/ x 2) x))

The problem with integers and non-negative rationals is that there are infinite decreasing
sequences over these domains, whereas this is not the case with the natural numbers.

Can we use measure functions to prove that functions over the rationals are terminating?
Yes; see the following exercise.

Exercise 5.19 Prove that the following function is terminating using measure functions.

(definec f (x :rational) :rational

(if (>= x 100)

x

(f (+ x 1/100))))

Can we generalize and use other domains with ordering relations which do not admit
infinite length decreasing sequences? This is a valid way to generalize measure functions.
We present a further generalization of measure functions, where the domain includes lists of
natural numbers and the ordering relation is the lexicographic ordering. In order to support
all of the measure functions we already defined, the domain includes natural numbers as
well as non-empty lists of natural numbers. See the data definition for lex below. The
lexicographic ordering is provided by the function l< below and is defined using d<, a
function relating lists of natural numbers.

The datatype lex and the functions d< and l< are already defined in ACL2s. What is
shown below are equivalent definitions.
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(defdata lon (listof nat))

(defdata nlon (cons nat lon))

(defdata lex (oneof nat nlon))

(definec d< (x y :lon) :bool

(^ (consp x)

(consp y)

(v (< (car x) (car y))

(^ (= (car x) (car y))

(d< (cdr x)

(cdr y))))))

(definec l< (x y :lex) :bool

(v (< (len x) (len y))

(^ (= (len x) (len y))

(if (atom x)

(< x y)

(d< x y)))))

Further Generalized Measure Function Definition: m is a measure function for f
if all of the following hold.

1. m is an admissible function defined over a subset of the parameters of f;

2. f’s input contract implies m’s input contract;

3. m has an output contract stating that it always returns a lex ; and

4. on every recursive call of f, m applied to the arguments to that recursive call decreases
with respect to l<, under the conditions that led to the recursive call; this proof
obligation can mention f as a function symbol, but we have no axioms constraining f.

The next few exercises show that there are no infinite decreasing sequences using our
new domain and relation (in contrast to the integer and non-negative rational case). They
also show that our new ordering is significantly different from the previous ordering, which
was based on the natural numbers.

Exercise 5.20 Show that there are no infinite decreasing lex sequences, with respect to l<

using standard mathematical reasoning.

Exercise 5.21 Show that there is a bijection from lex to nat using mathematical reasoning.

Exercise 5.22 Let Pnat be a function with domain nat defined as follows: Pnat(x) = {y :
(nat y) ∧ (< y x)}, i.e., Pnat(x) is the set of predecessors of x, under <. Show that
there are no elements in nat that have an infinite number of predecessors, i.e., show that
{x : (natp x) ∧ |Pnat(x)| = ω} = ∅.

Exercise 5.23 Let Plex be a function with domain lex defined as follows: Plex(x) = {y :
(lexp y) ∧ (l< y x)}, i.e., Plex(x) is the set of predecessors of x, under l<. Show that
there are an infinite number of elements in lex that have an infinite number of predecessors,
i.e., show that |{x : (lexp x) ∧ |Plex(x)| = ω}| = ω.
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Can we generalize measure functions further? Yes. We can find other domains with
ordering relations which do not admit infinite length decreasing sequences and which are
more powerful than lexicographic orders on natural numbers. Pushing this idea to the cur-
rent limits of human comprehension leads to measure functions that return infinite ordinal
numbers. Ordinal numbers are at the heart of set theory, which, along with first-order logic,
forms the foundations of modern mathematics.

Here is an informal introduction to ordinal numbers.1 Ordinal numbers extend the
natural numbers and, as is the case with the natural numbers, are totally ordered, i.e., if α
and β are two different ordinal numbers then either α < β or β < α. So, an intuitive way to
think about ordinal numbers is to list them in order. They start with the natural numbers:

0, 1, 2, . . .

But, why stop there? Let’s add another element, the first infinite ordinal number, ω, to get:

0, 1, 2, . . . , ω

Notice that the natural numbers have the nice property that every decreasing sequence of
natural numbers is terminating. That is still true for the ordinal numbers we have seen so
far. While it is true that the number of ordinal numbers less than ω is infinite, there are
no infinitely decreasing sequences starting at ω. Why? Because if we start with ω, the next
element of a decreasing sequence has to be a natural number. It turns out that a basic
property of ordinal numbers is that they are terminating!

Why stop with ω? Let’s keep extending the ordinals:

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . .

At the limit of the above, we get ω + ω which happens to be ω · 2 and then we can keep
going:

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω + ω = ω · 2, ω · 2 + 1, . . .

Let’s keep going, but at a faster rate.

0, 1, 2, . . . , ω, ω + 1, . . . , ω · 2, ω · 2 + 1, . . . , ω · ω = ω2, ω2 + 1, . . . , ω3, . . . , ωω

So, now we have infinite numbers raised to infinite powers. Can we keep going? Sure. Let’s
go at an even faster rate.

0, 1, 2, . . . , ω, ω + 1, . . . , ω · 2, . . . , ω2, . . . , ωω, . . . , ωωω

, . . . , ωωω...

The last number in the above sequence is ε0 and it is ω raised to ω an infinite number
of times. Notice that it satisfies the seemingly contradictory equality ε0 = ωε0 . Ordinal
arithmetic is strange! Wait, does it make sense to have an infinite stack of infinities? After
all, raising the infinite number ω to any other exponent shown above (such as 2, ω and ωω)
gave us a number larger than the exponent, but how can it be that if we raise ω to ε0, which
is much larger than any of 2, ω, ωω, we just get the exponent, ε0?

One of the goals of the foundations of mathematics and set theory is to figure out how far
we extend the notion of an ordinal. This is relevant to us, because the notion of termination

1An observation that may help to avoid some confusion is that ordinal numbers differ from the cardinal
numbers we have been using to measure the size of sets.
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is fundamentally tied to ordinals, i.e., every notion of termination ultimately can be reduced
to a notion involving the ordinals (usually a very small subset of the ordinals). Another
way of saying this is that the ordinals include all possible termination processes and every
time we extend the notion of an ordinal, our ability to prove termination increases. Your
“contradiction radar” should be going off right about now. Maybe ordinals that satisfy
weird properties like the one that ε0 satisfies lead to inconsistency. It is true that assuming
the existence of ordinals that satisfy some “weird” properties leads to unsoundness, so if we
extend the ordinals too far, we break mathematics (yes, that would be bad). However, we
are nowhere near that point with ε0, which is a baby ordinal.

ACL2s allows the use of ordinal numbers, but that’s a topic for a more advanced class
on logic and computer-aided reasoning. Some of the challenging exercises at the end of the
chapter touch upon these issues. For example, consider exercises 5.50, 5.51 and 5.52. To
learn more, take more advances courses in formal methods.

5.6 Exercises

For each function below, you have to check if its definition is admissible, i.e., it satisfies the
definitional principle.

If the function does satisfy the definitional principle then:

1. Provide a measure that can be used to show termination.

2. Use the measure to prove termination.

3. Explain in English why the contract theorem holds.

4. Explain in English why the body contracts hold.

If the function does not satisfy the definitional principle then identify each of the 6
conditions above that are violated.

Exercise 5.24

(definec f (x :tl y :nat) :tl

(cond ((zp y) nil)

((endp x) (list y))

(t (f (cons y x) (1- y)))))

Exercise 5.25 Dead code example

(definec f (x y :nat) :int

(cond ((zp x) 1)

((< x 0) (f -1 -1))

(t (1+ (f (1- x) y)))))

Notice that the second case of the cond above is not reachable and will never be executed.
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Exercise 5.26

(definec f (x :int y :nat) :int

(cond ((zip x) 1)

((< x 0) (f (1+ y) (* x x)))

(t (1+ (f (1- x) y)))))

Exercise 5.27

(definec f (x :tl y :int) :nat

(cond ((endp x) y)

(t (1+ (f (rest x) y)))))

Exercise 5.28

(definec f (x :tl y :int) :nat

(cond ((endp x) y)

(t (f (rest x) (1+ y)))))

Exercise 5.29

(definec f (x :tl y :int) :tl

(cond ((zip y) x)

(t (f (rest x) (1- y)))))

Exercise 5.30

(definec f (x :nat) :int

(cond ((zp x) 1)

((< x 0) (f -1))

(t (1+ (f (1- y))))))

Exercise 5.31

(definec f (x :tl y :int) :nat

(cond ((^ (endp x) (zip y))

0)

((^ (endp x) (< y 0))

(1+ (f x (1+ y))))

((endp x)

(1+ (f x (1- y))))

(t

(1+ (f (rest x) y)))))

Exercise 5.32

(definec f (x :rational) :rational

(if (< x 0)

(f (+ x 1/2))

x))
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Exercise 5.33

(definec f (x :rational) :nat

(cond ((> x 0) (f (- x 3/2)))

((< x 0) (f (* x -1)))

(t x)))

Exercise 5.34

(definec f (x :rational) :nat

(cond ((> x 0) (f (- x 3/2)))

((< x 0) (f 180))

(t x)))

Exercise 5.35

(definec f (x :tl y :rational) :nat

(cond ((> y 0) (f x (1- y)))

((consp x) (f (rest x) (1+ y)))

((< y 0) (f (list y) (* y -1)))

(t y)))

Exercise 5.36

(definec f (x :tl y :nat) :nat

(if (endp x)

(if (zp y)

0

(1+ (f x (1- y))))

(1+ (f (rest x) y))))

Exercise 5.37

(definec fib (n :nat) :nat

(if (< n 2)

n

(+ (fib (1- n))

(fib (- n 2)))))

Exercise 5.38

(definec f (x y :int) :nat

(cond ((< x y) (1+ (f (1+ x) y)))

((> x y) (1+ (f x (1+ y))))

(t 0)))

Exercise 5.39

(definec f (n :nat) :nat

(cond ((<= n 1) n)

((evenp n) (f (/ n 2)))

(t (f (1+ n)))))
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Exercise 5.40

(definec f (n :nat) :nat

(cond ((<= n 1) n)

((evenp n) (f (/ n 2)))

(t (f (1+ (* 2 n))))))

Exercise 5.41

(definec e3 (x :nat y :pos) :nat

(cond ((zp x) x)

((= y 1) y)

((> x y) (e3 y x))

(t (e3 x (1- y)))))

Exercise 5.42

(definec foo (x :nat l :tl a :all) :all

(cond ((endp l) a)

((zp x) 1)

((oddp x) (foo (1- x) l a))

((> x (len l)) (foo (/ x 2) l x))

(t (foo x (rest l) (first l)))))

Exercise 5.43

(definec app-acc (x y acc :tl) :tl

(cond ((^ (endp x) (endp y)) acc)

((endp x) (app-acc x (rest y) (cons (first y) acc)))

((endp y) (app-acc (rest x) y (cons (first x) acc)))

(t (app-acc x nil (app-acc nil y acc)))))

Exercise 5.44

(definec app-swap (x y acc :tl) :tl

(cond ((^ (endp x) (endp y)) acc)

((endp x) (app-swap x (rest y) (cons (first y) acc)))

((endp y) (app-swap y x acc))

(t (app-swap x nil (app-swap acc nil y)))))

Exercise 5.45

(definec f (x :rational) :rational

(cond ((<= x 0) x)

((>= x 2) (f (/ x 2)))

((>= x 1) (f (- x 1/100)))

(t (f (/ 1 x)))))
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Exercise 5.46

(definec f (x :rational) :rational

(cond ((<= x 0) x)

((>= x 2) (f (/ x 2)))

((>= x 1) (f (- x 1/100)))

(t (f (- x)))))

Exercise 5.47

(definec f (n :all) :all

(cond ((v (! (integerp n))

(<= n 1)) 0)

((integerp (+ 1/2 (/ n 2))) (f (1+ n)))

(t (1+ (f (/ n 2))))))

Exercise 5.48 This is hard.

(defdata if-expr (oneof symbol (list ’if if-expr if-expr if-expr)))

(definec if-flat (x :if-expr) :if-expr

(if (symbolp x)

x

(let ((test (second x))

(true-branch (third x))

(false-branch (fourth x)))

(if (symbolp test)

(list ’if test (if-flat true-branch) (if-flat false-branch))

(if-flat (list ’if (second test)

(list ’if (third test) true-branch false-branch)

(list ’if (fourth test) true-branch false-branch)))))))

Exercise 5.49 This is hard.

(definec f (flg w :int r :non-0-integer z s x y a b zs :int) :bool

(cond ((= flg 1)

(if (> z 0)

(f 2 w r z 0 r w 0 0 zs)

(= w (expt r zs))))

((= flg 2)

(if (> x 0)

(f 3 w r z s x y y s zs)

(f 1 s r (1- z) 0 0 0 0 0 zs)))

(t (if (> a 0)

(f 3 w r z s x y (1- a) (1+ b) zs)

(f 2 w r z b (1- x) y 0 0 zs)))))

Exercise 5.50 This brings up interesting questions; consider using one of the generalized
notions of measure functions.

(definec ack (n m :nat) :pos
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(cond ((zp n) (1+ m))

((zp m) (ack (1- n) 1))

(t (ack (1- n) (ack n (1- m))))))

Exercise 5.51 This brings up interesting questions and is hard.

(definec mc (x :int) :nat

(if (< 100 x)

(- x 10)

(mc (mc (+ x 11)))))

Exercise 5.52 This brings up interesting questions and is hard.

(definec tk (a b c :int) :int

(if (<= a b)

b

(tk (tk (1- a) b c)

(tk (1- b) c a)

(tk (1- c) a b))))

Exercise 5.53 This is related to Exercise 5.52.

(definec tk4 (a b c d :int) :int

(if (<= a b)

b

(tk4 (tk4 (1- a) b c d)

(tk4 (1- b) c d a)

(tk4 (1- c) d a b)

(tk4 (1- d) a b c))))

Exercise 5.54 This brings up interesting questions and is hard.

(definec f (x :rational) :rational

(if (< x 0)

(- x)

(/ (f (- x (f (1- x)))) 2)))
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Induction

6.1 Introduction to Induction

Terminating functions give rise to induction schemes.
Consider the following function:

(definec nat-ind (n :nat) :nat

(if (zp n)

0

(nat-ind (1- n))))

This function is admissible. Given a natural number n it counts down to 0 and returns,
therefore it is terminating.

Induction is justified by termination: every terminating function gives rise to an in-
duction scheme. For example, suppose we want to prove φ using the induction scheme of
(nat-ind n). Our proof obligations are:

1. (! (natp n)) ⇒ φ

2. (natp n) ∧ (zp n) ⇒ φ

3. (natp n) ∧ (! (zp n)) ∧ φ|((n n-1)) ⇒ φ

A bit of terminology. The first proof obligation is the contract case. The first two proof
obligations are base cases (so the contract case is a base case). The third proof obligation
is an induction step because we get to assume that φ holds on smaller values. The last
hypothesis of the third proof obligation, φ|((n n-1)), is called an induction hypothesis.

Notice that the induction hypothesis is what distinguishes induction from case analysis,
i.e., we could try to prove φ using case analysis as follows:

1. (! (natp n)) ⇒ φ

2. (natp n) ∧ (zp n) ⇒ φ

3. (natp n) ∧ (! (zp n)) ⇒ φ

The three cases above are exhaustive. When reasoning about programs, case analysis is a
very useful proof technique, which we now define. Notice that it is the natural generalization
of the synonymous proof technique we defined in the context of propositional logic.

Case Analysis: If ψ is a formula and φ1, . . . , φn are formulas such that (or φ1 . . . φn)
is valid, then ψ is valid iff all of (φ1 ⇒ ψ), . . . , (φn ⇒ ψ) are valid.

The intuition is the same as before. We are proving that ψ holds by considering the
cases φ1, . . . , φn and since the cases are exhaustive (φ1 ∨ · · · ∨ φn ≡ t), ψ always holds.
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A commonly occurring example of where case analysis is useful is when we are proving
a theorem of the following form.

φ1 ∨ · · · ∨ φn ⇒ ψ

It is often a good idea to use case analysis to instead prove the following set of (individually)
simpler theorems.

φ1 ⇒ ψ, . . . , φn ⇒ ψ

Induction is more powerful than case analysis because it also allows us to assume induc-
tion hypotheses. This makes all the difference in the world when reasoning about programs.

Back to induction.
Why does induction work?
Suppose that we prove the above three cases, but φ is not valid.
Then, the set of objects in the ACL2 universe for which φ does not hold, say S, is non-

empty. S can only contain positive natural numbers, as case 1 rules out there being any
non-natural numbers in S and case 2 rules out 0 being in S. Consider the smallest (natural)
number s ∈ S. Now instantiate the induction step (3), replacing n by s:

(natp s) ∧ (! (zp s)) ∧ φ|((n s − 1)) ⇒ φ|((n s))

Notice that (φ|((n n-1)))|((n s)) = φ|((n s − 1)). But, we have that (natp s) holds and s 6= 0.
By the minimality of s, φ|((n s − 1)) also holds. By MP and the above, so does φ|((n s)). So,
s 6∈ S! That is our contradiction, so our assumption that φ is false led to a contradiction,
i.e., φ is in fact valid. This is a proof by contradiction.

Two observations.

1. We used a nice property of the natural numbers: they are terminating: every decreas-
ing sequence is finite. This is equivalent to saying that every non-empty subset has
a minimal element. Induction works as long as we have termination. We can prove
termination for any kind of ACL2s function, using measure functions. For example,
measure functions allow us to prove termination of functions that operate on lists.
Notice that they do this by relating what happens on lists to numbers.

2. We used a proof by contradiction. Why do people use proofs by contradiction? It
seems like an elaborate way of proving φ. In some sense it is, but it is a nice technique
to have in your arsenal because it often helps you focus on the goal: prove false.

Here is yet another way to see why induction works. Suppose, as before, that we prove
the three proof obligations above. Now, as before, the first two proof obligations directly
show that φ holds for all non-natural numbers and for 0. If we instantiate the third proof
obligation, the induction step, with the substitution ((n 1)), then the hypotheses hold (as
(natp 1), 1 6= 0 and φ|((n 0)) all hold), so by MP φ|((n 1)) holds. Notice that we use the
induction step to go from φ|((n 0)) to φ|((n 1)). Similarly, we can use φ|((n 1)) to get φ|((n 2))

and so on for all the natural numbers. We have just shown that for any natural number i,
φ|((n i)) holds, so φ holds for all objects in the ACL2s universe. This is a direct proof that
proof by induction is sound.
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6.2 Induction in ACL2s

We will define induction in its full glory, but before we do, a few observations. First of all,
induction in ACL2s will be more complicated that mathematical induction and the kinds of
induction you have already seen (probably). Why is that? One reason is that the ACL2s
universe includes more than numbers, e.g., it includes lists and trees, and we want the
ability to reason about arbitrary functions and properties. Another reason is that induction
is intricately connected to termination because termination justifies induction. We have
already invested a fair amount of effort on termination analysis in ACL2s and a wonderful
result is that every terminating function gives rise to an induction scheme! We just need to
define what that induction scheme is and then you can use it in your proofs for free. So,
the upcoming definitions of induction schemes and proofs by induction may be a little hard
to understand initially, but once you do understand them, you get a very powerful theorem
proving weapon, a weapon you need if you are to reason about computation. So, make sure
that you understand induction schemes and proof by induction well enough that you can
easily generate and explain the definitions from memory.

6.2.1 Induction Schemes

Suppose we are given a function definition of the form:

(defunc f (x1 . . . xn)
:input-contract ic
:output-contract oc
body)

Start by expanding away all macros in body ; this will make it easier to define induction
schemes. An occurrence of an expression in body that does not contain any ifs in it and
which is not a subexpression of the test of any if in body is a terminal.

A terminal is maximal if it is not contained in any other terminal.
For every terminal, there is a corresponding condition that must hold for execution to

reach the terminal.
For example, suppose that f has only one formal, x, and body is

(not (if (g x) (g x) (if (not (f (1- x))) (not (f (1- x))) (f (- x 2)))))

then the maximal terminals are (g x), (not (f (1- x))) and (f (- x 2)) (there are two
occurrences of (g x) in body but only one is a terminal) and the corresponding conditions are
(g x), (and (not (g x)) (not (f (1- x)))) and (and (not (g x)) (f (1- x))))).

The set of recursive calls of a terminal contains all the calls to f that must be executed
in order to execute the terminal. If the set of recursive calls of a terminal is empty, then
the terminal is basic; otherwise it is recursive.

In our previous example, the recursive calls corresponding to the maximal terminals are
{}, {(f (1- x))} (notice that we do not distinguish between the two calls of (f (1- x)))
and {(f (1- x)), (f (- x 2))} (the first terminal is basic and the other two are recursive).

Let 〈t1, . . . , tm〉 be a sequence containing f’s maximal terminals; let the corresponding
sequence of conditions be 〈c1, . . . , cm〉; and let the corresponding sequence of recursive calls
be 〈r1, . . . , rm〉, where ri is {(f x1 . . . xn)|σj

i

: 1 ≤ j ≤ |ri|} (the σj
i ’s are substitutions and

ri is {} if ti is basic).
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The function f gives rise to an induction scheme that is parameterized by a formula φ.
The induction scheme of (f x1 . . . xn) for φ consists of the following formulas:

1. ¬ic ⇒ φ

2. For all ti that are basic terminals: ic ∧ ci ⇒ φ

3. For all ti that are recursive terminals:
(

ic ∧ ci ∧
∧

1≤j≤|ri|
φ|

σ
j

i

)

⇒ φ

Proof by Induction: Let φ be any formula and let f be an n-ary function. If all of
the formulas in the induction scheme of (f x1 . . . xn) for φ are valid, then so is φ.

The formulas in the induction scheme of a function are called proof obligations because
if we prove that they are valid, it follows that φ is valid. The first formula is the contract
case. The second class of formulas are base cases. We will also characterize the first formula
as a base case. The last class of formulas are induction steps.

Consider the proof obligations generated by our running example.

1. ¬ic ⇒ φ

2. ic ∧ (g x) ⇒ φ

3. ic ∧ (not (g x)) ∧ (not (f (1- x))) ∧ φ|((x (1- x))) ⇒ φ

4. ic ∧ (not (g x)) ∧ (f (1- x)) ∧ φ|((x (1- x))) ∧ φ|((x (- x 2))) ⇒ φ

We allow some minor generalizations that we did not formalize to avoid notational clut-
ter. Firstly, we allow you to use induction schemes for functions with any distinct variables
as arguments. For example, the induction scheme of (nat-ind k) is generated as described
above, but we make believe that nat-ind was defined using k instead of n, so we wind up
with the induction scheme show previously, after applying the substitution ((n k)) to ev-
erything but φ. This is useful when we have formulas with many variables or with variables
that differ from those used to define the function whose induction schemes we are using.
We allow you to simplify the proof obligations using propositional logic, arithmetic, basic
properties of equality and “type” theorems, e.g., you can simplify away terms of the form
(allp term). Finally, we allow you to remove subsumed proof obligations, proof obligations
that are implied by other proof obligations.

Exercise 6.1 What induction schemes do the following functions give rise to? Simplify as
much as possible.

(definec f (x :all) :all

x)

(definec g (x :tl) :all

x)

Exercise 6.2 Show that if there is a proof of the validity of formula φ that only uses in-
duction schemes of non-recursive functions, then φ can be proven valid without using any
induction schemes at all.

Hint: Use case analysis instead and see Exercise 6.1.
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Let us consider some examples. What is the induction scheme for the following function?

(definec in (a :all l :tl) :bool

(and (consp l)

(or (== a (car l))

(in a (cdr l)))))

First, let us expand out macros, which gives us the following.

(definec in (a :all l :tl) :bool

(if (consp l)

(if (equal a (car l))

(equal a (car l))

(in a (cdr l)))

nil))

After simplifying allp expressions, we have the following.

1. (! (tlp l)) ⇒ φ

2. (tlp l) ∧ (! (consp l)) ⇒ φ

3. (tlp l) ∧ (consp l) ∧ (equal a (car l)) ⇒ φ

4. (tlp l) ∧ (consp l) ∧ (!= a (car l)) ∧ φ|((l (cdr l))) ⇒ φ

What if we defined in like this?

(definec in (a :all l :tl) :bool

(and (consp l)

(or (in a (cdr l))

(== a (car l)))))

First, let us expand out macros, which gives us the following.

(definec in (a :all l :tl) :bool

(if (consp l)

(if (in a (cdr l))

(in a (cdr l))

(equal a (car l)))

nil))

After simplifying allp expressions, we have the following.

1. (! (tlp l)) ⇒ φ

2. (tlp l) ∧ (! (consp l)) ⇒ φ

3. (tlp l) ∧ (consp l) ∧ (in a (cdr l)) ∧ φ|((l (cdr l))) ⇒ φ

4. (tlp l) ∧ (consp l) ∧ (! (in a (cdr l))) ∧ φ|((l (cdr l))) ⇒ φ

We saw how to go from functions to induction schemes, but we can also play this game
in reverse. Consider the following exercise.

Exercise 6.3 Provide a function that gives rise to the following induction scheme.



148 Reasoning About Programs

1. (! (natp n)) ⇒ φ

2. (natp n) ∧ (zp n) ⇒ φ

3. (natp n) ∧ (! (zp n)) ∧ φ|((n n−1)) ⇒ φ

Exercise 6.4 One correct answer to the previous exercise is nat-ind, but there are in-
finitely many correct answers. Show this.

Exercise 6.5 Prove that no function gives rise to the following “induction scheme.”

1. (! (natp n)) ⇒ φ

2. (natp n) ∧ (zp n) ⇒ φ

3. (natp n) ∧ (! (zp n)) ∧ φ|((n n+1)) ⇒ φ

Why do we not allow “induction schemes” like the one in the above exercise? Because
they are not sound! Remember that induction works because of termination. The only
“functions” that give rise to the above “induction scheme” are nonterminating functions.

Exercise 6.6 Prove that the “induction scheme” from Exercise 6.5 is not sound, i.e., use
the “induction scheme” to prove nil.

We end by noting that ACL2s generates induction schemes from function definitions in
a way that is very similar to what was explained here, but there are some differences. If you
use the theorem prover and ask it to perform a particular induction and you wind up with
proof obligations that seem strange, check what induction scheme was generated and if it
is not what you expected, then read the documentation on induction, rulers and related
topics.

6.3 Induction Examples

Recall the definition of sumn.

(definec sumn (n :nat) :nat

(if (zp n)

0

(+ n (sumn (1- n)))))

Let’s prove

(sumn n) = n(n + 1)/2

Recall that the first thing we do is to contract check conjectures. After fixing the above
conjecture, we get:

(natp n) ⇒ (sumn n) = n(n + 1)/2 (6.1)

We can’t prove this theorem using equational reasoning. Why?
Because we don’t know how many times to expand sumn. When you find yourself in

such a situation, induct!
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What induction scheme?
The one that the data definition gives rise to. In this case, we are reasoning about

natural numbers, so nat-ind’s induction scheme (which is the same as sumn’s induction
scheme). You have to identify both the function and the variables when using induction
schemes! We are using the induction scheme of (nat-ind n).

Our proof obligations are (we used some arithmetic reasoning, e.g., we replaced (zp n)

with n = 0):

1. (! (natp n)) ⇒ (6.1)

2. (natp n) ∧ n = 0 ⇒ (6.1)

3. (natp n) ∧ n 6= 0 ∧ (6.1)|((n (1- n))) ⇒ (6.1)

Notice that the proof now goes through with just equational reasoning.
Since we know how to do equational reasoning, we will skip the equational proofs, but

you can and should fill them in.
To see one reason why we need to identify variables, suppose we were asked to prove the

following equivalent conjecture:

(natp x) ⇒ (sumn x) = x(x + 1)/2

The induction scheme to use is now (nat-ind x), which is the induction scheme we
would get if nat-ind was defined using x instead of n.

Let’s now reason about the following function definition.

(definec ap (a b :tl) :tl

(if (endp a)

b

(cons (car a) (ap (cdr a) b))))

We want to prove that ap is associative.

(ap (ap a b) c) = (ap a (ap b c))

Contract checking gives:

(tlp a) ∧ (tlp b) ∧ (tlp c) ⇒ (ap (ap a b) c) = (ap a (ap b c)) (6.2)

We can’t prove this theorem using equational reasoning. Why?
Because we don’t know how many times to expand ap. When you find yourself in such

a situation, induct!
What induction scheme?
The one that the data definition gives rise to. In this case, we are reasoning about lists,

so tlp’s induction scheme. Recall the definition of tlp.

(definec tlp (l :all) :bool

(if (consp l)

(tlp (cdr l))

(== l ())))

This brings up another reason why we need to identify variables in induction schemes.
In (6.2), we have multiple variables that are true-lists, so which one are we using to generate
an induction scheme? Let’s say we use a, then the induction scheme of (tlp a) is:
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1. ¬(allp a) ⇒ (6.2)

2. (allp a) ∧ (consp a) ∧ (6.2)|((a (cdr a))) ⇒ (6.2)

3. (allp a) ∧ ¬(consp a) ⇒ (6.2)

This is equivalent to:

1. ¬(consp a) ⇒ (6.2)

2. (consp a) ∧ (6.2)|((a (cdr a))) ⇒ (6.2)

So, here we go. If you expand out the proof obligations, we have a problem we’ve seen
before! Do the induction step.

Exercise 6.7 We saw that the variables we use in proofs are irrelevant, e.g., even though
tlp was defined over l, we can apply induction using a instead. Explain why this is the
case.

Exercise 6.8 Assume that the output type for ap was defined to be all. This version of
ap is admissible. Using this version of ap, use induction to prove (tlp (ap x y)). (You
have to perform contract completion first.)

Exercise 6.9 Prove the following conjecture.

(=> (and (tlp x)

(tlp y))

(= (ln (ap x y))

(+ (ln x) (ln y))))

Exercise 6.10 Prove the output contracts of all the functions we have defined. Some will
require induction, but some can be proved using just equational reasoning.

Exercise 6.11 Formalize (using ACL2s) and prove the following theorem (n is a natural
number):

n
∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

Next, we will play around with rv. Here is the definition.

(definec rv (x :tl) :tl

(if (endp x)

nil

(ap (rv (cdr x)) (list (car x)))))

Now we want to prove:

(rv (rv x)) = x

Contract checking gives:

(tlp x) ⇒ (rv (rv x)) = x (6.3)
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We can’t prove this theorem using equational reasoning. Why?
Because we don’t know how many times to expand rv. When you find yourself in such

a situation, induct!
What induction scheme?
The one that the data definition gives rise to. In this case, we are reasoning about lists,

so tlp’s induction scheme, which is:

1. ¬(consp x) ⇒ (6.3)

2. (consp x) ∧ (6.3)|((x (cdr x))) ⇒ (6.3)

Try the proof. You will get stuck.
Now what? Well, we need a lemma. If we had the following:

(tlp x) ∧ (tlp y) ⇒ (rv (ap x y)) = (ap (rv y) (rv x)) (6.4)

we could finish the proof.
Let’s assume we have it and then finish the proof.
Notice that sometimes in the process of proving a theorem by induction, it is useful to

prove lemmas, helper theorems that allow us to prove the theorem under consideration. This
is similar to what happens when you try to define a function and realize that a helper function
would be useful. Most of the techniques we will present for reasoning about programs
have direct analogues to techniques for defining programs. Use these connections and your
intuitions about programming to help help you internalize and more fully understand how
to reason about programs.

Exercise 6.12 Prove (6.4). Use the induction scheme of (tlp x).

In the proof of (6.4), we needed to prove

(tlp x) ⇒ (ap x nil) = x

So, even the proof of the lemma requires a lemma. How far can this go? Far! It’s
recursive. That should not be surprising, after all, suppose you were writing a complex
program, say a compiler. Doing so will require helper functions, which themselves require
helper functions. How far can this go? Far! It’s recursive. It depends on the complexity of
the compiler. Similarly, reasoning about programs requires lemmas, which require lemmas,
and so on. Reasoning about programs is typically harder than writing them. For example,
writing collatz was easy, but proving that it terminates is an open problem. Writing the
following program is easy.

(definec f (x y z :int) :bool

(/= (+ (expt x 3) (expt y 3) (expt z 3)) 33))

Determining if the following conjecture is a theorem is hard.

(=> (and (intp x) (intp y) (intp z))

(f x y z))
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Exercise 6.13 What induction scheme does this give rise to?

(definec fib (n :pos) :pos

(if (<= n 2)

n

(+ (fib (1- n)) (fib (- n 2)))))

Let’s prove the following:

(fib n) ≥ n

Contract checking gives us:

(posp n) ⇒ (fib n) ≥ n

Now what?
Can we prove this using induction on the natural numbers? Try it. The base case is

trivial, but the induction step winds up requiring case analysis.
A better idea is to use the induction scheme fib gives rise to.
Why should you not be surprised? Well, because we didn’t define fib using the data

definition for Nat, so why should the data definition give rise to the induction scheme we
need?

The point is that the induction scheme one should use to prove a conjecture is often
related to the recursion schemes of the functions appearing in the conjecture. If all of the
functions in the conjecture are based on a common recursion schemes, then the induction
schemes will also be based on the same recursion scheme.

Exercise 6.14 Prove the previous conjecture using the induction scheme of fib.

6.4 Induction Schemes for Defdata

What induction scheme do we get for data definitions? The basic idea is that we use the
definition of the recognizer that defdata generates to determine the induction scheme.

Here is an example. Consider the following data definition.1

(defdata lor (listof rational) :do-not-alias t)

This form generates a recognizer, lorp and you can see its definition using the following
command.

:pe lorp

Once you have the definition you can generate the induction scheme. The function is
defined as follows (more or less).

(definec lorp (l :all) :bool

(or (== l nil)

(and (consp l)

(rationalp (car l))

(lorp (cdr l)))))

1The :do-not-alias t part forces ACL2s to generate a new definition; without it, ACL2s realizes that
there is an existing data definition that is equivalent to this one.



Induction 153

Exercise 6.15 What induction scheme does the above definition of lorp give rise to?

6.5 Data-Function-Induction Trinity

Every admissible recursive definition leads to a valid induction scheme. What underlies both
recursion and induction is termination. So, terminating functions give us both recursion
schemes and induction schemes.

Notice a wonderful connection.
The data-function-induction (DFI) trinity:

1. Data definitions give rise to predicates recognizing such definitions. These predicates
must be shown to terminate. (Otherwise they are inadmissible by the Definitional
Principle.) Their bodies give rise to a recursion scheme, e.g., tlp gives rise to the
common recursion scheme for iterating over a list.

2. Functions over these data types are defined by using the recursion scheme as a tem-
plate. Templates allow us to define correct functions by assuming that the function we
are defining works correctly in the recursive case. For example, in the definition of ap,
we get to assume that ap works correctly in the recursive case, even if its first input
has 1,000,000 elements, i.e., we get to assume that ap applied to 999,999 elements
works and all we have to do is to figure out what to do with the first element. This
is about as simple an extension to straight-line code as we can imagine. Recursion
provides us with a significant increase in expressive power, allowing us to define many
functions that are not expressible using only straight-line code.

3. The Induction Principle: Proofs by induction involving such functions and data def-
initions should use the same recursion scheme to generate proof obligations. Non-
recursive cases are proven directly. For each recursive case, we assume the theorem
under any substitutions that map the formals to arguments in that recursive call.
Induction provides us with a significant increase in theorem proving power over equa-
tional reasoning, analogous to the increase in definitional power we get when we move
from straight-line code to recursive code. Notice also that induction and recursion
are tightly related, e.g., when defining recursive functions, we get to assume that the
function works on smaller inputs; when proving theorems with induction, we get to
assume that the theorem holds on smaller inputs (the induction hypothesis).

6.6 The Importance of Termination

Notice how important termination turns out to be.

1. Termination is the non-trivial proof obligation for admitting function definitions.

2. Termination is what justifies common recursion schemes and the design recipe.

3. Termination is what justifies generative recursive function definitions.

4. Complexity analysis is just a refinement of termination.

5. Termination is what justifies mathematical induction.
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6. Terminating functions give rise to induction schemes. In fact, the only induction
schemes we will use are the ones we can extract from terminating functions.

Exercise 6.16 Consider the following non-terminating function definition.

(definec f (x :all) :all

(f x))

Were we to admit f (which we really can’t because it is non-terminating), we would get
the definitional axiom (f x) = (f x).

We have seen that this axiom does not lead to unsoundness. However, the “induction
scheme” this function gives rise to does lead to unsoundness. Prove nil using the induction
scheme f gives rise to. Notice that there is a stronger relationship between induction and
termination than there is between admissibility and termination. This relationship is an
important reason why ACL2s does not admit non-terminating function definitions.

6.7 Induction Like a Professional

In Exercise 6.12, we asked you to prove Conjecture 6.4.

(tlp x) ∧ (tlp y) ⇒ (rv (ap x y)) = (ap (rv y) (rv x))

We told you what induction scheme to use (the one that (tlp x) gives rise to).
Typically, you will have to figure out what induction scheme to use. How do you go

about doing that?
Look at the equality in the conclusion. What variables control the recursive functions?

On the LHS, it is x, due to (ap x y), and on the right hand side it is both x and y. Hence,
using the induction scheme of (tlp x) (the type of x) is a good choice.

However, this is typically not how professionals operate. What I do is as follows. I know
that I can assume that the theorem I am trying to prove holds for “smaller” values of the
arguments, as long as the smaller values are part of some terminating process (as we have
seen termination justifies induction). Instead of trying to guess these smaller values, I will
discover them while doing the proof! I do this by sketching out the proof, without worrying
about full justifications. During this proof sketch, I will keep track of what induction
hypotheses are useful and that will allow me to discover what induction scheme to use.
Once the sketch is complete, I will go back and fill in the details.

This is how most professionals think about induction proofs and it is a more powerful
way of doing induction than guessing.

So, here we go.

(rv (ap x y))

= { Def ap }
(rv (cons (car x) (ap (cdr x) y)))

= { Def rv }
(ap (rv (ap (cdr x) y)) (list (car x)))

= { Using an instance of the theorem ((x (cdr x))) }
(ap (ap (rv y) (rv (cdr x))) (list (car x)))

= { Lemma assoc-append }
(ap (rv y) (ap (rv (cdr x)) (list (car x))))
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= { Def rv }
(ap (rv y) (rv x))

Bingo! Induct on (tlp x) because we need an induction scheme that allows us to assume
that the theorem holds when we replace x with (cdr x).

We still have to do the base case. That should be easy, right. If so, we often just say it
is “obvious” using equational reasoning. But don’t do that unless you are sure.

So, let us try us sketch out the base case.

C1. (tlp x)

C2. (tlp y)

C3. (! (consp x))

D1. x=nil

(rv (ap x y))

= { Def ap, D1 }
(rv y)

= { ??? }
(ap (rv y) nil)

= { Def rv, D1 }
(ap (rv y) (rv x))

But how do I justify the ??? step?
I can’t just say Def ap because ap recurs down its first argument, so we have to prove

(ap x nil) = x

Exercise 6.17 Try proving the following conjecture using induction.

(=> (tlp x) (== (ap x nil) x))

A. Try proving it with the induction scheme of ap.
B. Try proving it like a professional.
C. Try proving it with the induction scheme of tlp.

We now consider a more in-depth example. We will define insertion sort and prove that
it returns an ordered permutation of its input.

Here is the definition of insertion sort.

(defdata lor (listof rational))

(definec insert (e :rational L :lor) :lor

(cond ((endp L) (list e))

((<= e (car L)) (cons e L))

(t (cons (car L) (insert e (cdr L))))))

(definec isort (L :lor) :lor

(if (endp L)

L

(insert (car L) (isort (cdr L)))))
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We will first prove that isort returns an ordered list, so let us define what it means for
a list to be ordered.

(definec orderedp (L :lor) :bool

(or (endp (cdr L))

(and (<= (car L) (second L))

(orderedp (cdr L)))))

Our goal is to prove the following theorem.

ϕ0 : (lorp L) ⇒ (orderedp (isort L))

We will use the professional method. To remember where I make decisions relevant to
the induction scheme I want to use, I will tag relevant hints with **.

(orderedp (isort L))

= { Def isort, (consp L) } **

(orderedp (insert (car L) (isort (cdr L))))

Now, I can assume (orderedp (isort (cdr L))), but how do I deal with the insert?
I need a lemma.
What lemma? Think about it before reading ahead.

ϕ1 : (rationalp e) ∧ (lorp L) ∧ (orderedp L) ⇒ (orderedp (insert e L))

Let us assume that this lemma holds and continue with the proof.

= { ϕ0|((L (cdr L))), ϕ1 } **

t

So, what induction scheme works? The simplest is (tlp L) because we need a recursive
case where the condition is consp and the function calls itself recursively on (cdr L).

This is interesting because if we used the type of L, we would induct on (lorp L) and
then we would have to prove the following five proof obligations.

0. ¬(allp L) ⇒ ϕ1 (trivial)

1. L = nil ⇒ ϕ1

2. L 6= nil ∧ ¬(consp l) ⇒ ϕ1

3. L 6= nil ∧ (consp l) ∧¬ (rationalp (car l)) ⇒ ϕ1

4. L 6= nil ∧ (consp l) ∧ (rationalp (car l)) ∧ϕ1|((l (cdr l))) ⇒ ϕ1

Notice that proof obligation 1 above is not the same as the base case for tlp. With
proof obligations 2, 3, we derive nil in the context.

So, the professional method told us to use an induction scheme from a function that
doesn’t even appear in ϕ0!

Once you use the professional method to determine the proof, go back and write it up
assuming you knew what induction scheme to use. Always do this to make sure you did not
skip any steps.

Exercise 6.18 Finish the proof.

What about the proof of ϕ1? Let’s again use the professional method.

(orderedp (insert e L))

= { Def insert, (consp L), e<=(car l) } **



Induction 157

(orderedp (cons e L))

= { Def orderedp, (consp L), car-cdr axioms }
(<= e (car L)) ∧ (orderedp L)

= { e<=(car L), context }
t

In the above I assumed e <= (car l), so I still have to consider the following.

(orderedp (insert e L))

= { Def insert, (consp L), ¬(e<=(car l)) } **

(orderedp (cons (car L) (insert e (cdr L))))

= { Def orderedp, (consp L), Def insert, car-cdr axioms }
(<= (car L) (car (insert e (cdr L)))) ∧ (orderedp (insert e (cdr l)))

= { ϕ1|((L (cdr L))) } **

(<= (car L) (car (insert e (cdr L))))

= { ϕ2 }
t

What function gives rise to the induction scheme I used? (insert e L).
We still have to prove the following lemma.

ϕ2 : (lorp L) ∧ (consp L) ∧ ¬(e<=(car L)) ∧ (orderedp L) ⇒
(<= (car L) (car (insert e (cdr L))))

The proof is by case analysis using the following cases.

1. (endp (cdr L))

2. (consp (cdr L)) ∧ e<=(second l)

3. (consp (cdr L)) ∧ ¬(e<=(second l))

Exercise 6.19 Prove ϕ2.

Now we will prove that isort returns a permutation of its input. To do that, we first
define the following functions.

(definec in (a :rational L :lor) :bool

(and (consp L)

(or (== a (car l))

(in a (cdr L)))))

(definec del (a :rational L :lor) :lor

(cond ((endp L) L)

((== a (car L)) (cdr L))

(t (cons (car L) (del a (cdr L))))))

(definec permp (x y :lor) :bool

(if (endp x)

(endp y)

(and (in (car x) y)

(permp (cdr x) (del (car x) y)))))

The goal is to prove the following.
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ϕ4 : (lorp L) ⇒ (permp (isort L) L)

Let’s use the professional method.

(permp (isort L) L)

= { Def isort, (consp L) } **

(permp (insert (car L) (isort (cdr L))) L)

= { (consp L), car-cdr axioms } **

(permp (insert (car L) (isort (cdr L))) (cons (car L) (cdr L)))

At this point, we can assume

(permp (isort (cdr L)) (cdr L))

But, how do we use that to make progress? We need a lemma!

ϕ5 : (rationalp e) ∧ (lorp x) ∧ (lorp y) ∧ (permp x y) ⇒

(permp (insert e x) (cons e y))

So, assuming we have ϕ5, we continue as follows.

= { ϕ5|((L (cdr L))), Def lorp, context } **To be filled in later

t

So, what induction scheme does the professional method tell us to use?
Well, we need a function of the form

(definec f (L :xxx ):...

(if (consp L) **Assumption

... (f (cdr L)) ... **IH

...))

where ... doesn’t matter, as long as it is not recursive, and xxx matters, but we have
flexibility.

So, again tlp works! Thus, we induct on (tlp L). As was the case previously, tlp does
not show up in ϕ4!

Once you figure out what induction scheme to use, recall that you have to go back and
do the proof carefully using the induction scheme. If you are doing this on a computer, you
can cut and paste!

Exercise 6.20 Prove ϕ4.

What about the proof of the ϕ5?
Let us again use the Professional Method.

(permp (insert e x) (cons e y))

= { Def insert, (consp x), e<=(car x) } **

(permp (cons e x) (cons e y))

= { Def permp, del }
(permp x y)

= { context }
t

(permp (insert e x) (cons e y))
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= { Def insert, (consp x), ¬[e<=(car x)] } **

(permp (cons (car x) (insert e (cdr x))) (cons e y))

= { Def permp, del }
(permp (insert e (cdr x)) (del (car x) (cons e y)))

***Note: not yet ready to use an IH due to (del ...)

= { Def del, Arithmetic, car-cdr axioms }
(permp (insert e (cdr x)) (cons e (del (car x) y)))

= { IH|((x (cdr x)) (y (del (car x) y))), context } **

t

What induction scheme do we wind up with now? We need a function of the following
form.

(definec f (e :rational x y :lor) : ...

(cond ((endp x) ...)

((<= e (car x)) ...)

(t ... (f e (cdr x) (del (car x) y)))))

Do we have such a function available? No. Is such a function admissible? Sure. It fits
one of the recursion schemes we have considered.

(definec f (e :rational x y :lor) :lor

(cond ((endp x) y)

((<= e (car x)) x)

(t (f e (cdr x) (del (car x) y)))))

Exercise 6.21 Finish the proof of ϕ5.

Exercise 6.22 If I used the following definitions, then ϕ4 still holds. Prove it.

(definec in (a :all L :tl) :bool

(and (consp L)

(or (== a (car l))

(in a (cdr L)))))

(definec del (a :all L :tl) :tl

(cond ((endp L) L)

((== a (car L)) (cdr L))

(t (cons (car L) (del a (cdr L))))))

(definec permp (x y :tl) :bool

(if (endp x)

(endp y)

(and (in (car x) y)

(permp (cdr x) (del (car x) y)))))

Hint. The idea is to show that the same theorems we had with the more restricted
definitions still hold.

So, we need lemmas showing that when we restrict these functions to lor’s and rational’s
good things happen, e.g.,

(rationalp a) ∧ (lorp L) ⇒ (lorp (del a L))

Exercise 6.23 Use sig to prove Exercise 6.22 in ACL2s.
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6.8 Generalization

Consider the following definitions.

(definec in (a :all X :tl) :bool

(and (consp X)

(or (== a (car X))

(in a (cdr X)))))

(definec subset? (x y :tl) :bool

; checks if every element in x is in y

(or (endp x)

(and (in (car x) y)

(subset? (cdr x) y))))

Try to prove the following theorem:

(tlp x) ⇒ (subset? x x) (6.5)

Notice that we can’t prove this by induction. Why? Because whatever we do, we have
to substitute for x and we want to distinguish the two occurrences of x. Unfortunately, we
can’t do that.

The solution?
Generalize: prove a theorem that we can prove by induction and that can then be used

to prove the theorem we really want.
Here is the generalization:

(tlp x) ∧ (tlp y) ∧ (subset? x y) ⇒ (subset? x (cons a y)) (6.6)

Now, we can prove (6.6) using induction.

Exercise 6.24 Prove (6.6)

Exercise 6.25 Prove (6.5)

Exercise 6.26 Prove (tlp x) ∧ (tlp y) ∧ (tlp z) ∧ (subset? x y) ∧ (subset? y z)

⇒ (subset? x z)

6.9 Reasoning About Accumulator-Based Functions

Let’s start with a simple definition we have already seen.

(definec rv (x :tl) :tl

(if (endp x)

nil

(ap (rv (cdr x)) (list (car x)))))

The problem with this definition is that it requires O(n2) conses. Why?
Because (ap x y) requires (len x) conses (as we have seen previously).
In the recursive case of rv, we have ap applied to (rv (cdr x))which requires (len (rv (cdr x)))

conses plus one cons for the list, i.e., (len x) conses. Since rv is called on x, then (cdr x),
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then (cddr x), . . ., it requires (len x) + (len x)−1 + (len x)−2+ · · ·+1 conses, which
is O(n2), for n = (len x).

This is a horrible function from an efficiency point of view, so we want to do better. One
way of doing better is to define a tail-recursive function that uses an accumulator.

Here is such a definition.

(definec rvt (x acc :tl) :tl

(if (endp x)

acc

(rvt (cdr x) (cons (car x) acc))))

But, we want a function with the same interface as rv and rvt takes 2 arguments. Hence,
we define:

(definec rv* (x :tl) :tl

(rvt x nil))

Exercise 6.27 Show that (rv* l) requires only O(n) conses, where n = (len l).

We are now in a situation that computer scientists often find themselves in. We have
one function definition rv that is simple, but inefficient. We also have another function
definition that is more complex, but efficient. We want to show that these two functions are
related in some way.

What relationship do we want to establish between rv* and rv?
Let’s prove that they are equal.

(tlp x) ⇒ (rv* x) = (rv x) (6.7)

Is it true?
Can we solve this with equational reasoning? No. Why not?
Notice that proving (6.7) will require proving:

(tlp x) ⇒ (rvt x nil) = (rv x) (6.8)

It is the recursive definitions that we have to worry about!
We will try to prove correctness using what we already know. Our proof attempt will

run into several hurdles and we will have to analyze what went wrong and how to proceed.
By the end of this section, we will have constructed a little recipe for reasoning about
accumulator-based functions in the future.

Let’s try proving (6.8) using the induction scheme of (tlp x).

1. ¬(consp x) ⇒ (6.8)

2. (consp x) ∧ (6.8)|((x (cdr x))) ⇒ (6.8)

Let’s try to prove this.
Proof?
The base case is simple. Here is an attempt at proving the induction step.
The context is:

C1. (consp x)
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C2. (tlp x)

C3. (tlp (cdr x)) ⇒ (rvt (cdr x) nil) = (rv (cdr x))

C4. (tlp (cdr x)) {C1, C2, Def tlp}

C5. (rvt (cdr x) nil) = (rv (cdr x)) {C3, C4, MP}

Proof:
(rvt x nil)

= { By C1 and the definition of rvt }

(rvt (cdr x) (cons (car x) nil))

But, now what? Our induction hypothesis tells us something about

(rvt (cdr x) nil)

but we really need to know something about

(rvt (cdr x) (cons (car x) nil))

so we’re stuck. The point is that when we expand

(rvt x nil)

we get an expression that is of the form

(rvt . . . (cons . . .))

The second argument is not nil, but all instantiations of the theorem we want to prove
(which is how induction hypotheses are generated) give us a nil in the second argument.

We need a handle on that second argument, but we’re not going to get it if the theorem
we want to prove has a nil there; we need a variable. We call this a generalization step
because we are now going to prove a theorem about (rvt x acc), whereas before we were
proving a theorem about a special case of the above, namely about (rvt x nil). But, now
we have to figure out what the new theorem we want to prove is.

(tlp x) ∧ (tlp acc) ⇒ (rvt x acc) = ???

What is ??? ? Think about the role of acc in the definition of rvt. The accumulator
corresponds to a partial result: it should be the reverse of the elements of the original
argument to rvt that we have seen already, so we wind up with:

(tlp x) ∧ (tlp acc) ⇒ (rvt x acc) = (ap (rv x) acc) (6.9)

Suppose we prove (6.9). Can we use it to prove (6.7) and (6.8)?
Yes. Why?
The base case is simple. Here is a proof of the induction step. First, our context is:

C1. (tlp x)

C2. (tlp acc)

C3. (consp x)



Induction 163

C4. (tlp (cdr x)) ∧ (tlp acc) ⇒
(rvt (cdr x) acc) = (ap (rv (cdr x)) acc)

D1. (tlp (cdr x)) {Def tlp, C1, C3}

D2. (rvt (cdr x) acc) =
(ap (rv (cdr x)) acc) {C4, D1, C2, MP}

Here is the proof. It starts the same way as before.
(rvt x acc)

= { By C1 and the definition of rvt }

(rvt (cdr x) (cons (car x) acc))

But, now we have yet another problem. The induction hypothesis doesn’t match the
above, since, as stated it is

(rvt (cdr x) acc) = (ap (rv (cdr x)) acc)

and we don’t want acc as the second argument of rvt; we want (cons (car x) acc).
So, we can either define a function that gives rise to this induction scheme, or we can see

if we have such a function available to us. In fact, we do: rvt! So, let’s use the induction
scheme of (rvt x acc). That gives us the following context:

C1. (consp x)

C2. (tlp x)

C3. (tlp acc)

C4. (tlp (cdr x)) ∧ (tlp (cons (car x) acc)) ⇒
(rvt (cdr x) (cons (car x) acc)) =
(ap (rv (cdr x)) (cons (car x) acc))

D1. (tlp (cdr x)) {C2, Def tlp, C1}

D2. (tlp (cons (car x) acc)) {C3, Def tlp, cons axioms}

D3. (rvt (cdr x) (cons (car x) acc)) =
(ap (rv (cdr x)) (cons (car x) acc)) {C4, D1, D2, MP}

Proof:
(rvt x acc)

= { By C1 and the definition of rvt }

(rvt (cdr x) (cons (car x) acc))

= { By D3 }

(ap (rv (cdr x)) (cons (car x) acc))

= { Def of ap (working on pulling acc out to match RHS) }

(ap (rv (cdr x)) (ap (list (car x)) acc))

= { Associativity of ap (now we pull acc out) }

(ap (ap (rv (cdr x)) (list (car x))) acc)

= { Def of rv, C1 }
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(ap (rv x) acc)

Based on our experience above, here is a little recipe for reasoning about accumulator-
based functions.
Part 1: Defining functions

1. Start with a function f.

2. Define ft, a tail-recursive version of f with an accumulator.

3. Define f*, a non-recursive function that calls ft and is logically equivalent to f, i.e.,
this is a theorem

hyps ⇒ (f* . . . ) = (f . . . )

Part 2: Proving theorems

4. Identify a lemma that relates ft to f. It should have the following form:

hyps ⇒ (ft . . . acc) = . . . (f . . . ) . . .

Remember that you have to generalize, so all arguments to ft should be variables (no
constants). The RHS should include acc.

5. Assuming that the lemma in 4 is true, and using only equational reasoning, prove the
main theorem

hyps ⇒ (f* . . . ) = (f . . . )

If you have to prove lemmas, prove them later.

6. Prove the lemma in 4. Use the induction scheme of ft.

7. Prove any remaining lemmas.

You might wonder why we bother to define f*? So that we can use f* as a replacement
for f: ft won’t do because it has a different signature than f.

You might want to swap steps 5 and 6. Don’t because you want to first make sure that
the lemma from 4 is the one you need.

If you want to swap steps 6 and 7, that’s fine.

6.10 Exercises

6.10.1 List Theory

The following functions are used in the exercises below.

(definec rem-dups (a :tl) :tl

(cond ((endp a) nil)

((in (car a) (cdr a))

(rem-dups (cdr a)))

(t (cons (car a) (rem-dups (cdr a))))))

(definec no-dups (a :tl) :bool
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(or (endp a)

(and (! (in (car a) (cdr a)))

(no-dups (cdr a)))))

Exercise 6.28 Prove the following.

;theorem ln-ap

(=> (and (tlp x)

(tlp y))

(= (ln (ap x y))

(+ (ln x) (ln y))))

Exercise 6.29 Prove the following.

;theorem ln-rv

(=> (tlp x)

(= (ln (rv x))

(ln x)))

Exercise 6.30 Prove the following.

;theorem ln-rem-dups

(=> (tlp x)

(<= (ln (rem-dups x))

(ln x)))

Exercise 6.31 Prove the following.

;theorem ln-rem-dups-no-dups

(=> (and (tlp x)

(no-dups x))

(= (ln (rem-dups x))

(ln x)))

Exercise 6.32 Prove the following.

;theorem in-ap

(=> (and (tlp x)

(tlp y))

(== (in a (ap x y))

(or (in a x) (in a y))))

Exercise 6.33 Prove the following.

;theorem in-rv

(=> (tlp x)

(== (in a (rv x))

(in a x)))
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Exercise 6.34 Prove the following.

;theorem in-rem-dups

(=> (tlp x)

(== (in a (rem-dups x))

(in a x)))

Exercise 6.35 Prove the following.

;theorem rem-dups-no-dups

(=> (and (tlp x)

(no-dups x))

(== (rem-dups x)

x))

Exercise 6.36 Prove the following.

;theorem rem-dups-has-no-dups

(=> (tlp x)

(no-dups (rem-dups x)))

Exercise 6.37 Prove the following.

;theorem rem-dups-idempotent

(=> (tlp x)

(== (rem-dups (rem-dups x))

(rem-dups x)))

6.10.2 Set Theory

The following functions are used in the exercises below.

(definec == (x y :tl) :bool

; checks if x and y have exactly the same set of elements

(and (subset? x y)

(subset? y x)))

(definec union (x y :tl) :tl

; the union of x and y

(ap x y))

(definec intersect (x y :tl) :tl

; the intersection of x and y

(cond ((endp x) nil)

((in (car x) y)

(cons (car x) (intersect (cdr x) y)))

(t (intersect (cdr x) y))))

(definec cardinality (x :tl) :nat

; the number of distinct elements in x
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(ln (rem-dups x)))

For all the exercises in this section, either prove the conjecture or exhibit a counterex-
ample. You may find it useful to do the exercises in an order that is different than the order
in which they are presented.

Exercise 6.38 Prove the following.

;theorem intersect-same

(=> (tlp x)

(== (intersect x x)

x))

Exercise 6.39 Prove the following.

;theorem intersect-x-sub-y

(=> (and (tlp x)

(tlp y)

(subset? x y))

(== (intersect x y)

x))

Exercise 6.40 Prove the following.

;theorem intersect-ln

(=> (and (tlp x)

(tlp y)

(tlp z)

(subset? x y)

(subset? y z))

(= (ln (intersect x (intersect y z)))

(ln x)))

Exercise 6.41 Prove the following.

;theorem in-intersect

(=> (and (tlp x)

(tlp y))

(== (in a (intersect x y))

(and (in a x) (in a y))))

Exercise 6.42 Prove the following.

;theorem intersect-associative

(=> (and (tlp x)

(tlp y)

(tlp z))

(== (intersect (intersect x y) z)

(intersect x (intersect y z))))
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Exercise 6.43 Prove the following.

;theorem intersect-ln-lemma

(=> (and (tlp x)

(tlp y)

(tlp z)

(tlp w))

(= (ln (intersect (intersect x y) (intersect w z)))

(ln (intersect x (intersect (intersect y w) z)))))

Exercise 6.44 Prove the following.

(=> (and (tlp x)

(tlp y)

(subset? (rv x) y))

(subset? x (rv y)))

Exercise 6.45 Prove the following.

(=> (tlp x)

(== (union x x) x))

Exercise 6.46 Prove the following.

(=> (and (tlp x)

(tlp y))

(== (union x y)

(union y x)))

Exercise 6.47 Prove the following.

(=> (tlp x)

(== (intersect x x) x))

Exercise 6.48 Prove the following.

(=> (and (tlp x)

(tlp y))

(<= (cardinality (union x y))

(+ (cardinality x) (cardinality y))))

Exercise 6.49 Prove the following.

(=> (and (tlp x)

(tlp y)

(tlp z))

(== (intersect (intersect x y) z)

(intersect x (intersect y z))))
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Exercise 6.50 Prove the following.

(=> (and (tlp x)

(tlp y)

(tlp z))

(== (union (union x y) z)

(union x (union y z))))

Exercise 6.51 Prove the following.

(=> (tlp x)

(<= (cardinality x)

(ln x)))

Exercise 6.52 Prove the following.

(=> (and (tlp x)

(tlp y))

(= (cardinality (union x x))

(cardinality x)))

Exercise 6.53 Prove the following.

(=> (and (tlp x)

(tlp y))

(= (cardinality (intersect x x))

(cardinality x)))

Exercise 6.54 Prove the following.

(=> (and (tlp x)

(tlp y))

(<= (cardinality (union x y))

(+ (cardinality x) (cardinality y))))

Exercise 6.55 Prove the following.

(=> (and (tlp x)

(tlp y)

(= (cardinality (union x y)) (cardinality y)))

(= (cardinality (union y x))

(cardinality y)))

Exercise 6.56 Prove the following.

(=> (and (tlp x)

(= (cardinality x) (ln x)))

(== (rem-dups x) x))
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Exercise 6.57 Prove the following.

(=> (and (tlp x)

(tlp y)

(subset? x y)

(<= n (cardinality x)))

(<= n (ln y)))

Exercise 6.58 Prove the following.

(=> (and (tlp x)

(tlp y)

(< 0 (cardinality x))

(== x y))

(consp y))

Exercise 6.59 Prove the following.

(=> (and (tlp x)

(tlp y)

(subset? (union x y) x)

(< (cardinality x) (cardinality y)))

(!= x x))

6.10.3 Sorting

In this section, the exercises require you define functions and formalize claims written in
(rigorous) English.

Exercise 6.60 Use defdata to define lor, a (true) list of rationals.

Exercise 6.61 Define insertion sort, where the input is a lor.

Exercise 6.62 Define quicksort, where the input is a lor.

Exercise 6.63 Define merge sort, where the input is a lor.

Exercise 6.64 Define bubble sort, where the input is a lor.

Exercise 6.65 Define orderedp, a function that given an lor checks that the elements of
the list are in non-decreasing order.

Exercise 6.66 Define permp, a function that given a two true-lists (not necessarily lors)
checks that they are permutations of each other.

Exercise 6.67 Show that insertion sort returns an ordered permutation.

Exercise 6.68 Show that quicksort returns an ordered permutation.

Exercise 6.69 Show that merge sort returns an ordered permutation.
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Exercise 6.70 Show that bubble sort returns an ordered permutation.

Exercise 6.71 Show that if x and y are permutations of each other and they are both
ordered, then they are equal.

Exercise 6.72 Show that all the sorting algorithm are equal to each other.

Exercise 6.73 Without using the definition of permp (or any theorems that depend on
permp) show that insertion sort is equal to quicksort.

6.10.4 Tail Recursion

Use the recipe for reasoning about accumulator-based functions for all of the exercises in
this section.

Exercise 6.74 Define and prove the correctenss of a tail recursive version of sumn.

Exercise 6.75 Define and prove the correctenss of a tail recursive version of insert.

Exercise 6.76 Define and prove the correctenss of a tail recursive version of del.

Exercise 6.77 Define and prove the correctenss of a tail recursive version of isort.

Exercise 6.78 Define and prove the correctenss of a tail recursive version of fib.

Exercise 6.79 Define and prove the correctenss of a tail recursive version of ap.

Exercise 6.80 Define and prove the correctenss of a tail recursive version of rem-dups.

Exercise 6.81 Define and prove the correctenss of a tail recursive version of intersect.

6.10.5 Recurrences

Each function in this section corresponds to a recurrence relation. For each function solve
the recurrence relation by finding a closed-form solution expressible in ACL2s and then
prove that it is a solution.

Exercise 6.82

(definec r1 (n :nat) :pos

(if (zp n)

1

(+ (r1 (1- n)) (expt 2 n))))

Exercise 6.83

(definec r2 (n :nat) :nat

(if (zp n)

0

(1+ (* 2 (r2 (1- n))))))
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Exercise 6.84

(definec r3 (n :nat) :nat

(if (zp n)

1

(+ 1 (* 2 n) (r3 (1- n)))))

Exercise 6.85

(definec r4 (n :nat) :int

:skip-tests t

(match n

(0 1)

(1 2)

(2 5)

(& (+ (r4 (1- n)) (r4 (- n 2)) (- (r4 (- n 3))) 4))))

Exercise 6.86

(definec r5 (n :pos) :int

:skip-tests t

(match n

(1 0)

(2 3)

(3 8)

(& (+ (r5 (1- n)) (r5 (- n 2)) (- (r5 (- n 3))) 4))))

Exercise 6.87

(definec r6 (n :nat) :int

:skip-tests t

(if (< n 2)

(1+ n)

(- (* 2 (r6 (1- n)))

(r6 (- n 2)))))

Exercise 6.88

(definec r7 (n :nat) :int

:skip-tests t

(if (<= n 2)

n

(- (* 3 (r7 (1- n)))

(* 2 (r7 (- n 2))))))

Exercise 6.89

(definec r8 (n :nat) :nat

(if (zp n)

5

(1+ (* 2 (r8 (1- n))))))
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Exercise 6.90

(definec r9 (n :nat) :nat

(if (zp n)

0

(+ (r9 (1- n)) (expt n 2))))

Exercise 6.91

(definec r10 (n :nat) :nat

:skip-tests t

(if (<= n 1)

n

(+ (r10 (floor n 2)) (r10 (ceiling n 2)))))

Exercise 6.92

(definec r11 (n :nat) :int

:skip-tests t

(match n

(0 12)

(1 17)

(& (+ (r11 (floor n 2)) (r11 (ceiling n 2)) -12))))

Exercise 6.93

(definec r12 (n :nat) :int

:skip-tests t

(match n

(0 2)

(1 6)

(& (+ (r12 (1- n)) (* 6 (r12 (- n 2)))))))

Exercise 6.94

(definec r13 (n :nat) :nat

(match n

(0 7)

(1 12)

(& (+ (r13 (- n 2)) (* 8 n) -2))))

Exercise 6.95

(definec r14 (n :nat) :nat

(if (zp n)

n

(+ (* 3 (r14 (1- n))) (* 2 n))))

Exercise 6.96
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(definec r15 (n :nat) :int

:skip-tests t

(if (< n 2)

n

(- (* 3 (r15 (1- n)))

(* 3 (r15 (- n 2))))))

Exercise 6.97

(definec r16 (n :nat) :int

:skip-tests t

(if (<= n 2)

n

(- (* 3 (r16 (1- n)))

(* 3 (r16 (- n 2))))))

6.10.6 Miscellaneous Exercises

Exercise 6.98 Prove that there is a bijection from lex to nat using the ACL2s logic (paper
and pencil). See Exercise 5.21. Do this by defining an ACL2s function from lex to nat

and formalizing what it means for it to be a bijection.
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Steering the ACL2 Sedan

7.1 Interacting with ACL2s

Most of the material in this chapter comes from the Computer-Aided Reasoning book. As
depicted in Figure 7.1, the theorem prover takes input from both you and a database, called
the logical world or simply world. The world embodies a theorem proving strategy, developed
by you and codified into rules that direct the theorem prover’s behavior. When trying to
prove a theorem, the theorem prover applies your strategy and prints its proof attempt.
You have no interactive control over the system’s behavior once it starts a proof attempt,
except that you can interrupt it and abort the attempt. When the system succeeds, new
rules, derived from the just-proved theorem, are added to the world according to directions
supplied by you. When the system fails, you must inspect the proof attempt to see what
went wrong.

Your main activity when using the theorem prover is designing your theorem proving
strategy and expressing it as rules derived from theorems. There are over a dozen kinds of
rules, each identified by a rule class name. The most common are rewrite rules, but other
classes include type-prescription, linear, elim, and generalize rules. The basic command for
telling the system to (try to) prove a theorem and, if successful, add rules to the database
is the defthm command.

(defthm name formula
:rule-classes (class1 . . . classn))

The command directs the system to try to prove the given formula and, if successful, re-
member it under the name name and build it into the database in each of the ways specified
by the class i. To find out details of the various rule classes, see the documentation topic
rule-classes.

You have lots of control over what the theorem prover can do. For example, every rule
has a status of either enabled or disabled. The theorem prover only uses enabled rules. So
by changing the status of a rule or by specifying its status during a particular step of a
particular proof with a “hint” (see the documentation topic hints), you can change the
strategy embodied in the world.

7.2 The Waterfall

So, how does ACL2 work? Let’s look at the classic example that shows the ACL2 waterfall.
This is in ACL2s mode.

(defun rev (x)
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Figure 7.1: Data Flow in the Theorem Prover

(if (endp x)

nil

(append (rev (rest x)) (list (first x)))))

(defthm rev-rev

(implies (tlp x)

(equal (rev (rev x)) x)))

Think of defun as definec without contracts. See section 8.2 of the Computer-Aided
Reasoning book for an in-depth discussion.

The rev-rev example nicely highlights the organization of ACL2, which is shown in
Figure 7.2. At the center is a pool of formulas to be proved. The pool is initialized with
the conjecture you are trying to prove. Formulas are removed from the pool and processed
using six proof techniques. If a technique can reduce the formula, say to a set of n ≥ 0 other
formulas, then it deposits these formulas into the pool. In the case where n is 0, the formula
is proved by the technique. If a technique can’t reduce the formula, it just passes it to the
next technique. The original conjecture is proved when there are no formulas left in the
pool and the proof techniques have all halted. This organization is called “the waterfall.”

Go over the proof output for the above theorem in Theorem Proving Beginner Mode in
ACL2s.

7.3 Term Rewriting

It is easy to be impressed with what ACL2 can do automatically, and you might think that
it does everything for you. This is not true. A more accurate view is that the machine is a
proof assistant that fills in the gaps in your “proofs.” These gaps can be huge. When the
system fails to follow your reasoning, you have to use your knowledge of the mechanization
to figure out what the system is missing. And, an understanding of how simplification, and
in particular rewriting, works is a requirement.

We are going to focus on rewriting, as the successful use of the theorem prover requires
successful control of the rewriter.

You have to understand how the rewriter works and how the theorems you prove affect
the rewriter in order to develop a successful proof strategy that can be used to prove the
theorems you are interested in formally verifying.



Steering ACL2s 179

User

Eliminate

Simplify

Equivalences

Generalize

Destructors

Pool

Induct

Eliminate Irrelevance

Use

Figure 7.2: Organization of the Theorem Prover
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Here is a user-level description of how the rewriter works. The following description is
not altogether accurate but is relatively simple and predicts the behavior of the rewriter in
nearly all cases you will encounter.

If given a variable or a constant to rewrite, the rewriter returns it. Otherwise, it is
dealing with a function application, (f a1 . . . an). In most cases it simply rewrites each
argument, ai, to get some a′i and then “applies rewrite rules” to (f a′1 . . . a′n), as described
below.

But a few functions are handled specially. For example if f is if, the test, a1, is rewritten
to a′1 and then a2 and/or a3 are rewritten, depending on whether we can establish if a′1 is
nil.

Now we explain how rewrite rules are applied to (f a′1 . . . a′n). We call this the target
term and are actually interested in a given occurrence of that term in the formula being
rewritten.

Associated with each function symbol f is a list of rewrite rules. The rules are all
derived from axioms, definitions, and theorems, as described below, and are stored in reverse
chronological order – the rule derived from the most recently proved theorem is the first one
in the list. The rules are tried in turn and the first one that “fires” produces the result.

A rewrite rule for f may be derived from a theorem of the form

(implies (and hyp1 . . . hypk)
(equal (f b1 . . . bn)

rhs))

Note that the definition of f is of this form, where k = 0.
Aside: A theorem concluding with a term of the form (not (p . . .)) is considered, for

these purposes, to conclude with (iff (p . . .) nil). A theorem concluding with (p . . .),
where p is not a known equivalence relation and not not, is considered to conclude with
(iff (p . . .) t).

Such a rule causes the rewriter to replace instances of the pattern, (f b1 . . . bn), with
the corresponding instance of rhs under certain conditions as discussed below.

Suppose that it is possible to instantiate variables in the pattern so that the pattern
matches the target. We will depict the instantiated rule as follows.

(implies (and hyp′1 . . . hyp′k)
(equal (f a′1 . . . a′n)

rhs′))

To apply the instantiated rule the rewriter must establish its hypotheses. To do so, rewriting
is used recursively to establish each hypothesis in turn, in the order in which they appear in
the rule. This is called backchaining. If all the hypotheses are established, the rewriter then
recursively rewrites rhs′ to get rhs′′. Certain heuristic checks are done during the rewriting
to prevent some loops. Finally, if certain heuristics approve of rhs′′, we say the rule fires
and the result is rhs′′. This result replaces the target term.

7.3.1 Example

Suppose you just completed a session with ACL2s where you proved theorems leading to
the following rewrite rules.

These rewrite rules were admitted in the give order, i.e., 1 was admitted first, then 2,
then 3, then 4.



Steering ACL2s 181

1. (f (h a) b) = (g a b)

2. (g a b) = (h b)

3. (g c d) = (h c)

4. (f (h a) (h b)) = (f (h b) a)

� Some of the rewrite rules above can never be applied to any expression. Which rules
are they?

� Show what ACL2s rewrites the following expression into. Show all steps, in the order
that ACL2s will perform them.

(equal (f (f (h b) (h a)) b) (h b))

Answer:
1. Rule 2 cannot be applied because rule 3 will always match first.
2. Here are all the steps.
(equal (f (f (h b) (h a)) b) (h b))

= { By Rule 4 }

(equal (f (f (h a) b) b) (h b))

= { By Rule 1 }

(equal (f (g a b) b) (h b))

= { By Rule 3 }

(equal (f (h a) b) (h b))

= { By Rule 1 }

(equal (g a b) (h b))

= { By Rule 3 }

(equal (h a) (h b))

So, ACL2s will not prove the above conjecture. But, does there exist a proof of the
above conjecture?

Yes! For example, if we use rule 2 instead of rule 3 at the last step, then ACL2s will be
left with

(equal (h b) (h b))

which it will rewrite to t (using the reflexivity of equal). The point is that ACL2s is
not a decision procedure for arbitrary properties of programs. In fact, this is an undecidable
problem, so there can’t be a decision procedure.

7.3.2 Three Rules of Rewriting

Let’s consider how we can take what we learned to make effective use of the theorem prover.
Remember the three rules.
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1. We saw that ACL2 uses lemmas (theorems) as rewrite rules. Rewrite rules are
oriented, i.e., they are applied only from left to right. We saw that theorems of the form

(implies ... (equal (foo ...) ...))

are used to rewrite occurrences of

(foo ...)

2. Rules are tried in reverse-chronological order (last first) until one that matches is
found. If the rule has hypotheses, then we backchain, trying to discharge those hypotheses.
If we discharge the hypotheses, we apply the rule, and recursively rewrite the result.

3. We saw that rewriting proceeds inside-out, i.e., first we rewrite the arguments to a
function before rewriting the function.

7.3.3 Pitfalls

Suppose we have both of the following rules.

(defthm app-associative

(implies (and (tlp x) (tlp y) (tlp z))

(equal (app (app x y) z)

(app x (app y z)))))

(defthm app-associative2

(implies (and (tlp x) (tlp y) (tlp z))

(equal (app x (app y z))

(app (app x y) z))))

Ignoring hypotheses for the moment, when we try to rewrite

(app x (app y z))

We wind up getting into an infinite loop. So notice that you can have non-terminating
rewrite rules. ACL2 does not check that rewrite rules are non-terminating, so if you admit
the above two rules, you can easily cause ACL2 to chase its tail forever. Non-termination
here does not cause unsoundness; all that happens is that ACL2 becomes unresponsive and
you have to interrupt it, but non-terminating rewrite rules will never allow you to prove
nil. Contrast this with non-terminating function definitions, which, as we have seen, can
lead to unsoundness.

7.3.4 Examples

Suppose that we have the following rule.

(defthm app-associative

(implies (and (tlp x) (tlp y) (tlp z))

(equal (app (app x y) z)

(app x (app y z)))))

What does the following get rewritten to?
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(implies (and (tlp a) (tlp b) (tlp c) (tlp d))

(equal (app (app (app a b) c) d)

(app (app a (app b c) d))))

Here is another separate example. Suppose that we have the following two rules.

(defthm +-commutative

(implies (and (rationalp x) (rationalp y))

(equal (+ x y)

(+ y x))))

Oops. This seems like a really bad rule. Why?
ACL2 is smart enough to identify rules like this that permute their arguments. It

recognizes that they will lead to infinite loops, so it only applies when the term associated
with y is “smaller” than the term associated with x. The details are not relevant. What is
relevant is that this does not lead to infinite looping. Also a variable is smaller than another
if it comes before it in alphabetical order, and a variable is smaller than a non-variable
expression, e.g., x is smaller than (f y).

We also have

(defthm +-associative

(implies (and (rationalp x) (rationalp y) (rationalp z))

(equal (+ (+ x y) z)

(+ x (+ y z)))))

What does the following get rewritten to?

(implies (and (rationalp a) (rationalp b) (rationalp c))

(equal (+ (+ b a) c)

(+ a (+ c b))))

What does this get rewritten to?

(implies (and (rationalp a) (rationalp b) (rationalp c))

(equal (+ a (+ b c))

(+ (+ c b) a)))

Can you prove using equational reasoning that the above conjecture is true?
Yes, but rewriting does not discover this fact. Because rewriting is directed. What does

one do in such situations?
Add another rule, e.g., :

(defthm +-swap

(implies (and (rationalp x) (rationalp y) (rationalp z))

(equal (+ x (+ y z))

(+ y (+ x z)))))

Now what happens to the above?

7.3.5 Generalize!

The previous example shows that sometimes we have to add rewrite rules in order to prove
conjectures (by rewriting).
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As a general rule, we may have many options for adding rewrite rules and we want to
do it in the most general way.

For example, suppose that during a proof, we are confronted with the following stable
subgoal, where a subgoal is stable if none of our current rewrite rules can be applied to any
subexpression of the subgoal.

(... (app (rev (app x y)) nil) ...)

We realize that (app (rev (app x y)) nil) is equal to (rev (app x y)), so we need
a rewrite rule that allows us to simplify the above further. One possibility is:

(defthm lemma1

(implies (and (tlp x) (tlp y))

(equal (app (rev (app x y)) nil)

(rev (app x y)))))

But a better, and more general, lemma is the following.

(defthm lemma2

(implies (tlp x)

(equal (app x nil)

x)))

Why is the second lemma better? Because given the contracts for app and rev, any time
we can apply lemma1, we can apply lemma2, but not the other way around. That means
that lemma2 allows us to simplify more expressions than lemma1.

7.4 Exercises

Prove all of the exercises in Chapter 6 using the ACL2s theorem prover.
For example, here is the exercise corresponding to Exercise 6.98

Exercise 7.1 Prove the theorems in Exercise 6.98 using the ACL2s theorem prover.
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Abstract Data Types and Observational

Equivalence

8.1 Abstract Data Types

Let’s just jump right in and consider a simple example: stacks.
Think about how you interact with trays in a cafeteria. You can take the top tray (a

“pop” operation) and you can add a tray (a “push” operation).
Think about how you respond to interruptions. If you are working on your homework

and someone calls, you suspend your work and pick up the phone (push). If someone then
knocks on the door, you stop talking and open the door (push). When you finish talking,
you continue with the phone (pop), and when you finish that (pop), you go back to your
homework.

Think about tracing a recursive function, say the factorial function.

(definec !! (n :nat) :pos

(if (zp n)

1

(* n (!! (- n 1)))))

Consider the call (!! 3). It involves a call to (!! 2) (push) which involves a call
to (!! 1) (push) which involves a call to (!! 0) 0 (push) which returns 1 (pop), which
is multiplied by 1 to return 1 (pop) which is multiplied by 2 to return 2 (pop) which is
multiplied by 3 to return 6 (pop). If you trace !!, and evaluate (!! 3), ACL2s will show
you the stack.

(trace$ !!)

(!! 3)

So the idea of a stack is that it is a data type that allows several operations, including:

� stack-push :add an element to the stack; return the new stack

� stack-head: return the top element of a non-empty stack

� stack-pop: remove the head of a non-empty stack; return the new stack

We are going to think about stacks in an implementation-independent way. There are
two good reasons for doing this. First, a user of our stacks does not have to worry about how
stacks are implemented; everything they need to know is provided via a set of operations we
provide. Second, we can change the implementation if there is a good reason to do so and,
as long as we maintain the guarantees we promised, our changes cannot affect the behavior
of the code others have written using our stack library.

If you think about what operations a user might need, you will see that also the following
operations are needed.
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� new-stack: a constructor that creates an empty stack; without this operation, how
does a user get their hands on a stack?

� stackp: a recognizer for stacks

The above description is still vague, so let’s formalize it in ACL2s with an implementa-
tion.

We start by defining what elements a stack can hold.

(defdata element all)

; Data definition of a stack: a list of elements

(defdata stack (listof element))

; Data definition of an empty stack

(defdata empty-stack nil)

; Data definition of a non-empty stack

(defdata non-empty-stack (cons element stack))

; Empty, non-empty stacks are stacks

(defdata-subtype empty-stack stack)

(defdata-subtype non-empty-stack stack)

; The push operation inserts e on the top of the stack s

(definec stack-push (e :element s :stack) :non-empty-stack

(cons e s))

; The pop operation removes the top element of a non-empty stack

(definec stack-pop (s :non-empty-stack) :stack

(rest s))

; The head of a non-empty stack

(definec stack-head (s :non-empty-stack) :element

(first s))

; Stack creation: returns an empty stack

(definec new-stack () :empty-stack

nil)

While we now have an implementation, we do not have an implementation-independent
characterization of stacks. In fact, we will see two such characterizations.

To simplify the reasoning we have to do later, we assume that ap and rv, as well as the
various theorems we have proved about them have been defined. In addition, we add some
theorems about ap and rv (that ACL2s knows about the default versions of these functions,
app and rev). These theorems state that if you append or reverse a list of some type then
you get back a list of the same type. We also have a macro and a theorem about stackp.

(sig ap ((listof :a) (listof :a)) => (listof :a))

(sig rv ((listof :a)) => (listof :a))

(property stack-tlp (l :all) (== (stackp l) (tlp l)))

(defmacro stack (a) ‘(listof ,a))
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8.2 Algebraic Data Types

The first idea is to characterize stacks using only the algebraic properties they satisfy.
What the user of our library will be able to see is the following.

1. The subtype theorems:

(defdata-subtype empty-stack stack)

(defdata-subtype non-empty-stack stack)

These theorems state that empty-stack and non-empty-stack are subtypes of stack.
That is any object that satisfies empty-stackp also satisfies stackp and similarly for
non-empty-stackp.

2. The following signatures and theorems. The signatures correspond to the contracts
of the functions defined, parameterized over the kinds of elements the stack contains.
That is, think of :a as a type; if it is nat, then the signature for stack-push tells
us that calling stack-push on a nat and a stack of nats gives us back a stack of
nats. The satisfies clauses for stack-pop and stack-head tell us that their first
arguments (denoted by x1) are non-empty stacks.

(sig stack-push (:a (stack :a)) => (stack :a))

(sig stack-pop ((stack :a)) => (stack :a)

:satisfies (non-empty-stackp x1))

(sig stack-head ((stack :a)) => :a

:satisfies (non-empty-stackp x1))

The theorems tell us that new-stack return an empty stack, that elementp is a
recognizer and that stack-push returns a non-empty stack.

(property () (empty-stackp (new-stack)))

(property (e :all) (boolp (elementp e)))

(property (e :element s :stack)

(non-empty-stackp (stack-push e s)))

Notice that the user does not see the data definition of a stack, because how we
represent stacks is implementation-dependent. They also do not see the data definition
of element, since that that can be any recognizer.

3. The (algebraic) properties that stacks satisfy. These properties include the contract
theorems for the stack operations and the following properties:

(property pop-push (s :stack e :element)

(== (stack-pop (stack-push e s))

s))

(property head-push (s :stack e :element)
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(== (stack-head (stack-push e s))

e))

(property push-pop (s :non-empty-stack)

(== (stack-push (stack-head s) (stack-pop s))

s))

(property empty-stack-unique (s :empty-stack)

(== (new-stack)

s))

There are numerous interesting questions we can now ask. For example:

1. How did we determine what these properties should be?

2. Are these properties independent? We can characterize properties as either being
redundant, meaning that they can be derived from existing properties, or independent,
meaning that they are not provable from existing properties. How to show redundancy
is clear, but how does one show that a property is independent? The answer is to come
up with two implementations, one which satisfies the property and one which does not.
Since we already have an implementation that satisfies all the properties, to show that
some property above is independent of the rest, come up with an implementation that
satisfies the rest of the properties, but not the one in question.

3. Are there any other properties that are true of stacks, but that do not follow from the
above properties, i.e., are independent?

Exercise 8.1 Show that the above four properties are independent.

Exercise 8.2 Find a property that stacks should enjoy and that is independent of all the
properties we have considered so far. Prove that it is independent.

Exercise 8.3 Add a new operation stack-size. Define this in a way that is as simple
as possible. Modify the contracts and properties in your new implementation so that we
characterize the algebraic properties of stack-size.

Exercise 8.4 Change the representation of stacks so that the size is recorded in the stack.
Note that you will have to modify the definition of all the other operations that modify the
stack so that they correctly update the size. This will allow us to determine the size without
traversing the stack. Prove that this new representation satisfies all of the properties you
identified in Exercise 8.3.

Let’s say that this is our final design. Now, the user of our implementation can only
depend on the above properties. That also means that we have very clear criteria for how
we can go about changing our implementation. We can do so, as long as we still provide
exactly the same operations and they satisfy the same algebraic properties identified above.

Let’s try to do that with a new implementation. The new implementation is going to
represent a stack as a list, but now the head will be the last element of the list, not the first.
So, this is a silly implementation, but we want to focus on understanding algebraic data
types without getting bogged down in implementation details, so a simple example is best.



ADTs and Observational Equivalence 191

Once we understand that, then we can understand more complex implementations where
the focus is on efficiency. Remember: correctness first, then efficiency.

Try defining the new implementation and show that it satisfies the above properties.
Here is an answer.

(defdata element all)

; Data definition of a stack: a list of elements

(defdata stack (listof element))

; Data definition of an empty stack

(defdata empty-stack nil)

; Data definition of a non-empty stack

(defdata non-empty-stack (cons element stack))

; Empty, non-empty stacks are stacks

(defdata-subtype empty-stack stack)

(defdata-subtype non-empty-stack stack)

; Stack creation: returns an empty stack

(definec new-stack () :empty-stack

nil)

; The push operation inserts e on the top of the stack s

; The :otf-flg directive tells ACL2s to use induction on multiple

; initial subgoals (see the documentation for details)

(definec stack-push (e :element s :stack) :non-empty-stack

:otf-flg t

(ap s (list e)))

To admit the next function, we need some lemmas about stackp, ap and rv.

(property stack-app (x y :stack)

(stackp (ap x y)))

(property stack-rev (x :stack)

(stackp (rv x)))

; The pop operation removes the top element of a non-empty stack

(definec stack-pop (s :non-empty-stack) :stack

(rv* (rest (rv* s))))

; The head of a non-empty stack

(definec stack-head (s :non-empty-stack) :element

(first (rv* s)))

Exercise 8.5 Provide the lemmas ACL2s needs to admit all of these definitions.

Exercise 8.6 Prove that the above implementation of stacks satisfies all of the stack theo-
rems.
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8.3 Observational Equivalence

We are considering a basic question: how do we specify computational systems?
In the context of a stack library, one of the key ideas is that of an abstract data type.

What this means is that we will restrict what a user of the library can do. Instead of having
access to the underlying implementation, a user can only create, access and modify stacks
using a set of functions (methods, procedures, etc.) that we have defined. That is why the
data type is “abstract.” The reasons for this are numerous and include the following.

1. Separation of concerns. We remove dependencies between our implementation of a
stack and code that uses stacks. For example, a customer of the library can write
lots of code that depends on our library and years later we change the library without
having to worry about all the code that depends on it failing.

2. It makes debugging easier. If you have a clear interface, and a bug is found, it is now
much easier to determine who is responsible. Otherwise, you run into the situation
where the library owner can claim that the behavior is a feature, not a bug and the
the library user can claim that it is a bug, not a feature.

3. It makes development easier. One can parallelize development once you have an inter-
face. If we agree on an interface, then one team can start developing a library while
another develops an application that depends on the library.

However, knowing what the functions are and what their signatures are is not enough
to characterize the data type. We will consider two qualitatively different approaches for
proceeding from here.

1. The first approach is based on properties. We create a list of properties that the
data structure and its functions should satisfy. That is what we did with stacks
in the previous sections. We defined a collection of “algebraic properties,” hence
the term “algebraic data types.” We considered notions of redundancy, independece
and completeness. We saw how to deal with redundancy and independece (but not
completeness).

2. The other approach is based on refinement. We will define a simple implementation,
which will be the specification. We can make that available to users of the library.
Then, we define the notion of an external observation. The idea is that we will define
what an external observer of our stack library can see. Such an observer cannot see the
implementation of the library, just how the stack library responds to stack operations
for a particular stack. Customers of the library have only one guarantee: that the
actual implementation is going to provide the same externally visible behavior.

We have already seen an example of these two approaches in the context of sorting lists
of numbers.

Using the property-based approach, we agreed that a sorting algorithm is correct if it
returns an ordered permutation of its input. Arriving at this specification was not trivial and
alternative proposals for characterizing correctness are often wrong, e.g., this specification
is wrong: the algorithm must return an ordered list, every element in the output list must
be in the input list, every element in the input list must be in the output list and the length
of the lists must be equal.
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Using the refinement-based approach, we agreed that a sorting algorithm is correct if it
is equal to insertion sort.

An advantage of the refinement specification is that it is clearly complete, as it tells us
exactly what a correct sorting algorithm should return for every legal input. On the other
hand, it is much harder to determine if a set of properties is complete.

We now consider how to use the refinement-based approach to characterize stacks.
We will define the notion of an external observation. The idea is that we will define

what an external observer of our stack library can see. Such an observer cannot see the
implementation of the library, just how the stack library responds to stack operations for a
particular stack.

The observer can see what operations are being performed and for each operation what
is returned to the user. More specifically below is a list of operations and a description of
what the observer can see for each.

1. empty-stackp: what is observable is the answer returned by the library, which is
either t or nil.

2. stack-push: what is observable is only the element that was pushed onto the stack
(which is the element the user specified).

3. stack-pop: If the operation is successful, then nothing is observable. If the operation
is not successful, i.e., if the stack is empty, then an error is observable.

4. stack-head: If the operation is successful, then the head of the stack is observable,
otherwise an error is observable.

If a stack operation leads to a contract violation, then the observer observes the error,
and then nothing else. That is, any subsequent operations on the stack reveal absolutely
nothing.

Our job now is to define the observer. Use the first definition of stacks we presented
above.

First, we start by defining the library operations. Note that they have different names
than the functions we defined to implement them.

(defdata operation (oneof ’empty? (list ’push element) ’pop ’head))

An observation is a list containing either a boolean (for empty?), an element (for push
and head), or nothing (for pop). An observation can also be the symbol error (if pop or
head are called on an empty stack).

(defdata observation (oneof (list boolean) (list element) nil ’error))

We are now ready to define what is externally observable given a stack s and an
operation o.

(definec external-observation (s :stack o :operation) :observation

(cond ((== o ’empty?)

(list (empty-stackp s)))

((consp o) (list (second o)))

((== o ’pop) (if (empty-stackp s) ’error nil))

(t (if (empty-stackp s) ’error (list (stack-head s))))))

Here are some simple tests.
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(check= (external-observation ’(1 2) ’(push 4))

’(4))

(check= (external-observation ’(1 2) ’pop)

’())

(check= (external-observation ’(1 2) ’head)

’(1))

(check= (external-observation ’(1 2) ’empty?)

’(nil))

But we can do better. It should be the case that our code satisfies the following proper-
ties. Notice that each property corresponds to an infinite number of tests. (property . . .
:proofs? nil . . .) allows us to test a property. ACL2s can return one of three results.

1. ACL2s proves that the property is true. Note that test? does not use induction. In
this case, the test? event succeeds.

2. ACL2s falsifies the property. In this case, test? fails and ACL2s provides a concrete
counterexample.

3. ACL2s cannot determine whether the property is true or false. In this case all we know
is that ACL2s intelligently tested the property on a specified number of examples and
did not find a counterexample. The number of examples ACL2s tries can be specified.
A summary of the analysis is reported and the test? event succeeds.

(property (s :stack e :element)

:proofs? nil

(== (external-observation s (list ’push e))

(list e)))

(property (s :non-empty-stack)

:proofs? nil

(== (external-observation s ’pop)

nil))

(property (s :empty-stack)

:proofs? nil

(== (external-observation s ’pop)

’error))

(property (s :empty-stack)

:proofs? nil

(== (external-observation s ’head)

’error))

(property (s :stack e :element)

:proofs? nil

(== (external-observation (stack-push e s) ’head)

(list e)))

(property (s :non-empty-stack)
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:proofs? nil

(== (external-observation s ’empty?)

(list nil)))

(property (s :empty-stack)

:proofs? nil

(== (external-observation s ’empty?)

(list t)))

Now we want to define what is externally observable for a sequence of operations. First,
let’s define a list of operations.

(defdata lop (listof operation))

Next, let’s define a list of observations.

(defdata lob (listof observation))

Now, let’s define what is externally visible given a stack s and a list of observations.

(definec update-stack (s :stack op :operation) :stack

(cond ((in op ’(empty? head))

s)

((== op ’pop)

(if (empty-stackp s)

(new-stack)

(stack-pop s)))

(t (stack-push (second op) s))))

(definec external-observations (s :stack l :lop) :lob

(if (endp l)

nil

(let* ((op (first l))

(ob (external-observation s op)))

(if (== ob ’error)

’(error)

(cons ob (external-observations

(update-stack s op) (rest l)))))))

Here are some instructive tests.

(check= (external-observations

(new-stack)

’(head))

’(error))

(check= (external-observations

(new-stack)

’( (push 1) pop (push 2) (push 3)

pop head empty? pop empty? ))

’( (1) () (2) (3) () (2) (nil) () (t) ))

(check= (external-observations
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(new-stack)

’( (push 1) pop pop pop empty? ))

’( (1) () error))

(check= (external-observations

(new-stack)

’( (push nil) (push error) (push pop) empty? head pop

empty? head pop empty? head pop empty? head pop))

’( (nil) (error) (pop) (nil) (pop) () (nil) (error) ()

(nil) (nil) () (t) error))

Exercise 8.7 What happens when we use a different implementation of stacks? Suppose
that we use the second implementation of stacks we considered. Then, we would like to prove
that an external observer cannot distinguish it from our first implementation.

Prove this.

Exercise 8.8 Prove that the implementation of stacks from Exercise 8.4 is observationally
equivalent to the above implementation, as long as the observer cannot use stack-size.
This shows that users who do not use stack-size operation cannot distinguish the stack
implementation from Exercise 8.4 with our previous stack implementations.

Exercise 8.9 Prove that the implementation of stacks from Exercise 8.4 is observationally
equivalent to the implementation of stacks from Exercise 8.3. Extend the observations that
can be performed to account for stack-size.

8.4 Queues

We will now explore queues, another abstract data type.
Queues are related to stacks. Recall that in a stack we can push and pop elements.

Stacks work in a LIFO way (last in, first out): what is popped is what was most recently
pushed. Queues are like stacks, but they work in a FIFO way (first in, first out). A queue
then is like a line at the bank (or the grocery store, or an airline terminal, . . .): when you
enter the line, you enter at the end, and you get to the bank teller when everybody who
came before you is done.

Let’s start with an implementation of a queue, which is going to be similar to our
implementation of a stack.

; A queue is a true-list (like before, with stacks)

(defdata element all)

; Data definition of a queue: a list of elements

(defdata queue (listof element))

; Data definition of an empty queue

(defdata empty-queue nil)

; Data definition of a non-empty queue

(defdata non-empty-queue (cons element queue))
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; Empty, non-empty queues are queues

(defdata-subtype empty-queue queue)

(defdata-subtype non-empty-queue queue)

; Queue creation: a new queue is just the empty list

(definec new-queue () :empty-queue

nil)

; The head of a queue. Let’s decide that the head of the queue

; will be the first.

(definec queue-head (q :non-empty-queue) :element

(first q))

; Dequeueing can be implemented with rest

(definec queue-dequeue (q :non-empty-queue) :queue

(rest q))

; Enqueueing to a queue requires putting the element at the

; end of the list.

(definec queue-enqueue (e :element q :queue) :non-empty-queue

:otf-flg t

(ap q (list e)))

We’re done with this implementation of queues.
Instead of trying to prove a collection of theorems that hold about queues, we are going

to define another implementation of queues and will show that the two implementations are
observationally equivalent.

We’ll see what that means in a minute, but first, let us define the second implementation
of queues. The difference is that now the head of the queue will be the last element the list.
We will define a new version of all the previous queue-functions.

(defdata element2 all)

(defdata queue2 (listof element2))

; Data definition of an empty queue2

(defdata empty-queue2 nil)

; Data definition of a non-empty queue2

(defdata non-empty-queue2 (cons element2 queue2))

; Empty, non-empty queue2s are queue2s

(defdata-subtype empty-queue2 queue2)

(defdata-subtype non-empty-queue2 queue2)

; A new queue2 is just the empty list

(definec new-queue2 () :empty-queue2

nil)

; The head of a queue2 is now the last element of the list

; representing the queue2. What’s a simple way of getting our



198 Reasoning About Programs

; hands on this? Use rv*.

(definec queue2-head (q :non-empty-queue2) :element2

(first (rv* q)))

; Dequeueing (removing) can be implemented as follows. Recall that

; in this implementation, the first element of a queue2 is the last

; element of the list. Since we have rv*, we will use that to make

; this more efficient that if we were to use rv.

(definec queue2-dequeue (q :non-empty-queue2) :queue2

:otf-flg t

(rv* (rest (rv* q))))

; Enqueueing (adding an element to a queue2) can be implemented

; with cons. Note that the last element of a queue2 is at the

; front of the list.

(definec queue2-enqueue (e :element2 q :queue2) :non-empty-queue2

(cons e q))

Let’s see if we can prove that the two implementations are equivalent. To do that, we
are going to define what is observable for each implementation.

We start with the definition of an operation. e? is the empty check, e is enqueue, h is
head and d is dequeue

(defdata operation (oneof ’e? (list ’e element) ’h ’d))

Next, we define a list of operations.

(defdata lop (listof operation))

An observation is a list containing either a boolean (for e?), an element (for e and h),
or nothing (for d). An observation can also be the symbol error (if h d are called on an
empty queue).

(defdata observation (oneof (list boolean) (list element) nil ’error))

Next, we define a list of observations.

(defdata lob (listof observation))

Now we want to define what is externally observable given a sequence of operations and
a queue. It turns out we need a lemma for ACL2s to admit queue-run. How we came up
with the lemma is not important. (But in case it is useful, there was a problem proving
the contract of queue-run, so I admitted it with the output-contract of t and then tried to
prove the contract theorem and noticed (using the method) what the problem was).

(property queue-lemma (q :queue)

(queuep (ap q (list x))))

(definec queue-run (l :lop q :queue) :lob

(if (endp l)

nil

(let ((i (first l)))

(cond ((== i ’d)

(if (empty-queuep q)
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(list ’error)

(cons nil (queue-run (rest l) (queue-dequeue q)))))

((== i ’h)

(if (empty-queuep q)

(list ’error)

(cons (list (queue-head q)) (queue-run (rest l) q))))

((== i ’e?)

(cons (list (empty-queuep q)) (queue-run (rest l) q)))

(t (cons (list (second i))

(queue-run (rest l) (queue-enqueue (second i) q))))))))

Now we want to define what is externally observable given a sequence of operations and
a queue2. We need a lemma, as before. (It was discovered using the same method).

(property queue2-lemma (q :queue2)

(queue2p (rv (rest (rv q)))))

(definec queue2-run (l :lop q :queue2) :lob

(if (endp l)

nil

(let ((i (first l)))

(cond ((== i ’d)

(if (empty-queue2p q)

(list ’error)

(cons nil (queue2-run (rest l) (queue2-dequeue q)))))

((== i ’h)

(if (empty-queue2p q)

(list ’error)

(cons (list (queue2-head q)) (queue2-run (rest l) q))))

((== i ’e?)

(cons (list (empty-queue2p q)) (queue2-run (rest l) q)))

(t (cons (list (second i))

(queue2-run (rest l) (queue2-enqueue (second i) q))))))))

Here is a test.

(check=

(queue-run ’( e? (e 0) (e 1) d h (e 2) h d h) (new-queue))

(queue2-run ’( e? (e 0) (e 1) d h (e 2) h d h) (new-queue2)))

But, how do we prove that these two implementations can never be distinguished? What
theorem would you prove?

(property observational-equivalence (l :lop)

(== (queue2-run l (new-queue2))

(queue-run l (new-queue))))

But, we can’t prove this directly. We have to generalize. We have to replace the constants
with variables. How do we do that?

First, note that we cannot replace (new-queue2) and (new-queue) with the same vari-
able because they are manipulated by different implementations. Another idea might be to
use two separate variables, but this does not work either because they have to represent the
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same abstract queue. The way around this dilemma is to use two variables but to say that
they represent the same abstract queue. The first step is to write a function that given a
queue2 queue returns the corresponding queue.

(definec queue2-to-queue (q :queue2) :queue

(rv* q))

We need some lemmas.

(property queue2-queue-rev (q :queue2)

(queuep (rv x)))

(property ap-non-empty (x :tl)

(ap x (list y)))

Here is the generalization.

(property observational-equivalence-generalization

(l :lop q2 :queue2 q :all)

:hyps (== q (queue2-to-queue q2))

(== (queue2-run l q2)

(queue-run l q)))

Now, the main theorem is now a trivial corollary.

(property observational-equivalence (l :lop)

(== (queue2-run l (new-queue2))

(queue-run l (new-queue))))
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Reasoning about Imperative Code

We have seen how to reason about programs written in the ACL2s language using the ACL2s
logic and the ACL2s theorem prover. How do we reason about programs written in other
languages? Can we use what we have learned so far or do we have to define a logic for
the language and then a theorem prover for that language and logic? We will explore these
questions in this chapter.

In Section 9.1 we introduce a simple imperative language (SIP) and define its semantics
using ACL2s. In contrast to ACL2s, imperative languages allow us to change the value of
variables, so procedures in imperative languages are not functions, e.g., they do not satisfy
the axioms of equality that ACL2s functions satisfy.

In Section 9.2, we show how to define the semantics of SIP programs by compiling SIP
programs into ACL2s programs. This allows us to easily generate executable code from
our SIP programs. It also allows us to use all the nice features of ACL2s to analyze SIP
programs, including tracing and property-based testing.

In Section 9.3, we discuss how to reason about SIP programs. First we reason about
the ACL2s versions of SIP programs and then we show how to build systems that allow
us to directly reason about SIP programs using invariants, loop invariants, preconditions,
postconditions, assumptions and guarantees. These systems work by generating verification
conditions based on invariants provided by programmers and do not require any expertise
with the reasoning engine used to discharge these proof obligations. Section 9.4 includes a
set of exercises reinforcing this kind of reasoning and includes a link to an invariant discovery
game that allows one to reason about SIP programs.

9.1 SIP: A Simple Imperative Language

We introduce SIP, a simple imperative language, via an example. Consider the following
simple SIP program.

program multiply

main(n, m: nat)

{ var res, cnt: int;

res := 0;

cnt := 0;

while (cnt < m)

{ cnt := cnt+1;

res := res+n;

}
return res;
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}

SIP programs have a name; the above program’s name is multiply. The SIP programs
we consider have one procedure called main. In the program above, main has two inputs, n
and m. Both are of type nat. The SIP language has two types. The type int corresponds
to integers of arbitrary precision, i.e., there is no minimal integer and there is no maximal
integer. SIP also supports the type nat, which corresponds to integers greater than or equal
to 0.

All non-input variables need declarations. The variables res and cnt are declared to be
of type int. We use the assignment operator (:=) to assign initial values to the variables.

Next we have a while loop, consisting of the loop condition (cnt < m) and the body of
the loop, which updates the variables cnt and res.

Finally we have a return statement that indicates what the procedure returns. In
multiply, the value of res is returned.

Before we formalize the semantics of such programs, let us start by considering program
traces. We will do that with the simple approach of adding print statements as follows.

program multiply

main(n, m: nat)

{ var res, cnt: int;

res := 0;

cnt := 0;

while (cnt < m)

{ print(m, cnt, n, res);

cnt := cnt+1;

res := res+n;

}
print(m, cnt, n, res);

return res;

}

Now, imagine running the program with the inputs n = 7 and m = 4. The trace our
program generates is the following (without the header).

m cnt n res

4 0 7 0

4 1 7 7

4 2 7 14

4 3 7 21

4 4 7 28

The trace makes it clear that the program computes n * m by repeatedly adding n to
res.

9.2 Semantics of SIP

To define the semantics of SIP, we will write a compiler that takes a SIP program and
generates an ACL2s representation. This compiler can be written in any language. We will
not define this compiler, but we will show what it generates for the multiply program.
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(sip-program

multiply

((natp n) (natp m))

((intp cnt) (intp res))

((res 0) (cnt 0))

(< cnt m)

((print m cnt n res)

(cnt . (+ 1 cnt))

(res . (+ res n)))

((print m cnt n res))

(res))

The above is a call of the ACL2s macro sip-program that includes the name of the
SIP program (multiply), the input variables and their types, the declared variables and
their types, the initialization code, the while loop condition, the while loop body, where we
either have a print statement or an assignment operation. Note that we use alists to denote
how a variable gets updated. Then we have any post-loop statements and finally what, if
anything, gets returned.

Notice that the ACL2s representation is very close to the original SIP program and that
is by design because we want this step to be as simple and transparent as possible.

Now, the sip-program macro will wind up generating a list of definitions that provide
the semantics of multiply. The macro generates a list of utilities. One of those utilities
allows us to generate traces. More of these utilities will be introduced later. We will not
define the macro, but we will reveal what it generates.

First, the macro generates sip-multiply, an ACL2s version of multiply. In order to
define such a function, we need to deal with the while loop and this is done via the use of
a recursive helper function, sip-multiply-loop, as follows.

:program

(set-ignore-ok t)

(definec sip-multiply-loop (n m :nat cnt res :int) :int

(if (< cnt m)

(let ((cnt (+ 1 cnt))

(res (+ res n)))

(sip-multiply-loop n m cnt res))

res))

(definec sip-multiply (n m :nat) :int

(let ((res 0)

(cnt 0))

(sip-multiply-loop n m cnt res)))

Now, we can run the program as the following examples show.

(sip-multiply 7 4)

(sip-multiply 127 671)
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Not only do we now have executable versions of SIP programs such as multiply, but we
also have access to all ACL2s capabilities. For example, we can use check= and property

forms as shown below.

(check= (sip-multiply 7 4) (* 7 4))

; These two forms allow us to just test properties, and since the code

; generated is in :program mode, that is all we can do.

(set-acl2s-property-table-check-contracts? nil)

(set-acl2s-property-table-proofs? nil)

(property (n m :nat)

(= (sip-multiply n m) (* n m)))

The sip-program macro also generates utility functions for generating traces.

(definec sip-multiply-loop-trace (n m :nat cnt res :int) :tl

(if (< cnt m)

(cons (list m cnt n res)

(let ((cnt (+ 1 cnt))

(res (+ res n)))

(sip-multiply-loop-trace n m cnt res)))

‘((,m ,cnt ,n ,res))))

(definec sip-multiply-trace (n m :nat) :tl

(let ((res 0)

(cnt 0))

(app ’((multiply-trace)

(m cnt n res))

(sip-multiply-loop-trace n m cnt res))))

Here is an example of the trace utility functions in action.

(sip-multiply-trace 7 4)

(sip-multiply-trace 21 18)

In order to develop robust, usable tools, we have to deal with syntax checking, type
checking, error reporting, termination analysis, etc. during the compilation step. We will
ignore these issues as considering them in any depth will take us too far afield. We therefore
assume that SIP programs are free of errors and that they are terminating.

Exercise 9.1 Define a compiler that given a SIP program generates the corresponding
sip-program form. You can use your favorite language to do that.

Exercise 9.2 Define a version of the sip-program macro that generates the forms shown
above.

Exercise 9.3 You may wonder why the functions generated by sip-program are defined in
:program mode. Come up with a SIP program that is terminating, but for which one of the
ACL2s functions generated by sip-program is non-terminating.
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9.3 Reasoning About SIP Programs

Now that we can compile SIP programs to ACL2s programs, we can reason about SIP
programs using ACL2s. Try the following exercise before continuing.

Exercise 9.4 Prove the following conjecture using paper and pencil. Then prove it using
ACL2s. Assume that sip-program generated :logic mode functions.

(property (n m :nat)

(= (sip-multiply n m) (* n m)))

Notice that since sip-multiply is a non-recursive program that calls sip-multiply-loop,
we really need a lemma about sip-multiply-loop. Also, for reasons we have already dis-
cussed in the context of tail recursive functions, we will not be able to prove a lemma about
sip-multiply-loop that includes constants: we will have to generalize. Once we have the
appropriate lemma, then the main theorem follows via equational reasoning.

There are many lemmas that can be used to prove the main theorem. We know we have
to generalize, so one idea is to prove a lemma that is as close as possible to this, i.e., we are
trying to determine what sip-multiply-loop does given arbitrary inputs.

(= (sip-multiply-loop n m cnt res)

...)

We can use ACL2s to help us discover an appropriate lemma. Since we keep adding
to res during the loop, we expect an expression of the form (+ ... res). We are adding
n each time through the loop, so we should get something like (+ (* n ...) res). How
many times do we add n? At the end of the loop, assuming sip-multiply-loop was called
from sip-multiply, it is m, but at an arbitrary point during the loop we have gone through
cnt iterations, so there should be (- m cnt) iterations left. So, we can try the following.

(property (n m :nat cnt res :int)

(= (sip-multiply-loop n m cnt res)

(+ (* n (- m cnt)) res)))

We get counterexamples, but they involve assignments where cnt is greater than m, which
never happens. We can add an extra hypothesis to account for that and we get.

(property (n m :nat cnt res :int)

:hyps (<= cnt m)

(= (sip-multiply-loop n m cnt res)

(+ (* n (- m cnt)) res)))

That worked, so we can try the main theorem, which now goes through using only
equational reasoning.

(property (n m :nat)

(= (sip-multiply n m) (* n m)))

Here is another way to go about proving the main theorem. We will try to prove a
lemma of the following form.

(=> ...

(= (sip-multiply-loop n m cnt res)

(* n m)))
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The idea here is to identify invariants that imply that the final result we get is (* n m).
Again, we can use ACL2s to help us find these invariants. We start with (<= cnt m) since
we needed that in our first attempt.

(property (n m :nat cnt res :int)

:hyps (<= cnt m)

(= (sip-multiply-loop n m cnt res)

(* n m)))

ACL2s generates counterexamples that include negative numbers. We can rule such
examples by observing that cnt and res are always non-negative.

(property (n m :nat cnt res :int)

:hyps (and (<= cnt m) (<= 0 cnt) (<= 0 res))

(= (sip-multiply-loop n m cnt res)

(* n m)))

ACL2s still generates counterexamples. There are counterexamples where res is not
even a multiple of n. Actually, our hypotheses do not relate res with the input variables at
all, so of course we are going to get counterexamples! What is the relationship between res

and the other variables? The answer to the question leads us to the following conjecture.

(property (n m :nat cnt res :int)

:hyps (and (<= cnt m) (<= 0 cnt) (<= 0 res) (= res (* cnt n)))

(= (sip-multiply-loop n m cnt res)

(* n m)))

ACL2s does not find any counterexamples; in fact it proves the conjecture. It turns out
that we do not need all of the hypotheses, as the following theorem shows.

(property mult-lemma (n m :nat cnt res :int)

:hyps (and (<= cnt m) (= res (* cnt n)))

(= (sip-multiply-loop n m cnt res)

(* n m)))

Again, the main theorem goes through using only equational reasoning.

(property (n m :nat)

(= (sip-multiply n m) (* n m)))

Here are some interesting insights from this exploration.
The first is that the invariants were the key to proving correctness, so let us make this

clear by defining functions corresponding to the invariants and writing the properties in a
way that uses the

(definec inv1 (n m :nat cnt res :int) :bool

(^ (<= cnt m) (<= 0 cnt) (<= 0 res) (= res (* cnt n))))

(definec inv2 (n m :nat cnt res :int) :bool

(^ (<= cnt m) (= res (* cnt n))))

Now we can rephrase our properties to use these invariants.

(property (n m :nat cnt res :int)

:hyps (inv1 n m cnt res)
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(= (sip-multiply-loop n m cnt res)

(* n m)))

(property (n m :nat cnt res :int)

:hyps (inv2 n m cnt res)

(= (sip-multiply-loop n m cnt res)

(* n m)))

That makes it clear what we are doing.
Next, note that inv1 is strictly stronger than inv2.

(property (n m :nat cnt res :int)

(=> (inv1 n m cnt res)

(inv2 n m cnt res)))

(property (n m :nat cnt res :int)

(=> (inv2 n m cnt res)

(inv1 n m cnt res)))

So, some invariants are stronger than others and there can be many invariants which
can be used to prove correctness!

There is actually a lot one can say here. One basic fact is that there is a strongest
invariant. It is just an invariant that exactly corresponds to the set of reachable states.

What is the strongest invariant for multiply?
Inv1 is the strongest!
How do we know that?
Pick any state that satisfies inv1. Then run multiply with inputs n, m. You will wind

up reaching the state!
So, we can reason about SIP programs. Are we done? No because the current state

of affairs is not entirely satisfactory, for several reasons. One technical problem is that,
as Exercise 9.3 shows, we cannot expect sip-program to generate :logic mode functions,
unless we do more work to ensure we can prove termination. But, the main objection to
our current approach is that a SIP programmer should not have to learn ACL2s in order to
reason about SIP programs.

We need another approach, one where the reasoning is done directly on SIP programs.
We use our running example to introduce the key ideas.

First, we need a mechanism by which we can express what it is that main is supposed to
do. We will use Guarantee statements at the end of main to specify what main is supposed
to do. For our example, main is supposed to set res to the product of n and m, so we have
the following Guarantee statement.

Guarantee: J res = n*m K

The brackets are there to make it clear that this is not program text; it is an invariant,
a Boolean-valued statement that holds whenever program execution reaches the statement
(in this case, when main ends).

There is a dual statement that expresses what we can assume about the inputs, beyond
their types. That statement is the Assume statement. For example, if n and m were declared
to be of type int, then we could have added the following assumption at the beginning of
the program.

Assume: J n >=0 & m >= 0K
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So, the specification of procedures can include both assumptions and guarantees. A
procedure is correct if whenever it is given inputs that satisfy the types and the assumptions,
then when the procedure finishes execution, the guarantees holds. Notice the similarity
between this and contracts in ACL2s.

In many verification systems, the terms Precondition and Postcondition are used
instead of Assume and Guarantee .

Now that we know how to specify what SIP programs are supposed to do, how do we
prove that they are correct? We are going to design a system where programmers do not
have to provide proofs. Instead, they only have to provide key insights. This is similar to
what we did when reasoning about the ACL2s version of the code using ACL2s. Once we
identified the main lemma, ACL2s took care of all the tedious equational reasoning for us.
SIP programmers will not even have to write out lemmas. Instead, they will only provide
loop invariants : invariants that hold right before the loop condition is evaluated. Suppose
that the user has provided loop invariant I, then they are claiming that I holds before and
after the loop, i.e., that I holds whenever program execution reaches the program locations
indicated below.

program multiply

main(n, m: nat)

{ var res, cnt: int;

res := 0;

cnt := 0;

while JIK (cnt < m)

{ print(m, cnt, n, res);

cnt := cnt+1;

res := res+n;

JIK
}
print(m, cnt, n, res);

return res;

Guarantee: J res = n*m K
}

We already saw that we can prove that the ACL2s version of the multiply program is
correct using mult-lemma. The same idea works for when reasoning about the SIP program
directly. Instead of requiring the user to specify types, we will infer the types from the
variable declarations, so we will only require the user to set I to cnt <= m & res = cnt

* n and the solver (ACL2s, but this is not something the programmer needs to know) can
prove correctness. In order to prove correctness, we first need to show that I is a loop
invariant, which means it satisfies the following two conditions.

1. I holds when program execution reaches the loop for the first time, and

2. Given any state where program execution has reached I and I holds, then I also holds
after one iteration of the loop. There are two cases. If the loop condition is false then
the loop body is not executed, so I trivially holds after the loop. Otherwise, the loop
condition is true, and then I must hold after the loop body is executed. Notice that
when the loop body is executed, variables get updated and program execution loops
back the beginning of the loop, so I has to hold for the updated values of the variables.
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Once we prove that I is a loop invariant, we use it to show the guarantee. Our proof
obligation here is that whenever program execution reaches the end of the program, the
guarantee holds. To get to the end of the program, we have to get past the loop, which
means we satisfy I and the loop condition fails. If any such state satisfies the guarantee,
then we have proven program correctness.

This process of generating proof obligations is often called verification condition gener-
ation. Many tools for reasoning about various programming languages operate in this way.
While we will not define such a verification condition generator here, it is not hard to define
such a tool using ACL2s; in fact, the sip-program macro is what generates all the code
needed to generate verification conditions. We will show the proof obligations generated
when I is cnt <= m & res = cnt * n.

; Show that the invariant holds initially.

(property (n m :nat cnt res :int)

(let ((res 0) (cnt 0))

(and (<= cnt m) (= res (* cnt n)))))

; Show that the invariant is inductive

(property (n m :nat cnt res :int)

(=> (and (< cnt m)

(and (<= cnt m) (= res (* cnt n))))

(and (<= (+ 1 cnt) m)

(= (+ res n) (* (+ 1 cnt) n)))))

; Show that the loop invariant implies the guarantee

(property (n m :nat cnt res :int)

(=> (and (not (< cnt m))

(<= cnt m)

(= res (* cnt n)))

(= res (* n m))))

Exercise 9.5 Provide a paper and pencil proof of the above proof obligations.

9.4 SIP Exercises

Exercise 9.6 Play the invariant discovery game http://invgame.atwalter.com/ to gain
experience with loop invariants.

Exercise 9.7 Exhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program multiply-by-1000

main(k: int)

{ var res, i: int;

i := 0;

res := 10;

while JIK (i < 1000)

{ print(k, i, res);
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res := res + k;

i := i + 1;

JIK
}
print(k, i, res);

Guarantee: J res=10+k*1000 K
}

Exercise 9.8 Exhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program mult-of-6

main(n: nat)

{ var cnt, res: int;

cnt := 0;

res := 0;

while JIK (cnt < n)

{ print(n, cnt, res);

cnt := cnt + 1;

res := res + (cnt * cnt);

JIK
}
print(n, cnt, res);

Guarantee: J res = (n * (n + 1) * (1 + (2 * n))) / 6 K
}

Exercise 9.9 Exhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program summation

main(n: nat)

{ var i, sum: int;

sum := 0;

i := 1;

while JIK (i <= n)

{ print(n, i, sum);

sum := sum + i;

i := i + 1;

JIK
}
print(n, i, sum);

Guarantee: J sum = n*(n+1)/2 K
}

Exercise 9.10 Exhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program summation2

main(n: nat)



Imperative Code 211

{ var sum, cnt, mys: int;

sum := 0;

mys := 0;

cnt := 1;

while JIK (cnt <= n)

{ print(n, mys, cnt, sum);

sum := sum + cnt;

mys := cnt;

cnt := cnt + 1;

JIK
}
print(n, mys, cnt, sum);

Guarantee: J sum = n*(n+1)/2 K
}

Exercise 9.11 Exhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program mult-by-add

main (j, k: nat)

{ var i: int;

i := 0

while JIK (i < j*k)

{ print(j, k, i);

i := i + 1;

JIK
}
print(j, k, i);

Guarantee: J i = j*k K
}

Exercise 9.12 Exhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program square-times-2

main(k: nat)

{ var res, cnt: int;

cnt := 0;

res := 0;

while JIK (cnt < k)

{ print(k, cnt, res);

res := res + 2*k;

cnt := cnt + 1;

JIK
}
print(k, cnt, res);

Guarantee: J res=2*k ^2 K
}
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Exercise 9.13 Exhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program square-times-const

main(k: nat, j: int)

{ var res, cnt: int;

cnt := 0;

res := 0;

while JIK (cnt < k)

{ print(k, j, cnt, res);

res := res + j*k;

cnt := cnt + 1;

JIK
}
print(k, j, cnt, res);

Guarantee: J res=j*k ^2 K
}

Exercise 9.14 Exhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program cube

main(n: nat)

{ var cnt, res: int;

cnt := 0;

res := 0;

while JIK (cnt < n)

{ print (n, cnt, res);

res := res + (3 * ((cnt+1) ^2)) + ((cnt+1) * -3) + 1;

cnt := cnt + 1;

JIK
}
print (n, cnt, res);

Guarantee: J res = n ^3 K
}

Exercise 9.15 Exhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program cube2

main(n: nat)

{ var cnt, res, a, b: int;

cnt := 0;

res := 0;

a := 1;

b := 6;

while JIK (cnt < n)

{ print(n, cnt, a, b, res);

cnt := cnt + 1;
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res := res + a;

a := a + b;

b := b + 6;

JIK
}
print(n, cnt, a, b, res);

Guarantee: J res = n ^3 K
}

Exercise 9.16 Exhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program int-square-root

main(n: nat)

{ var cnt, sqr, odd: int;

cnt := 0;

sqr := 1;

odd := 1;

while JIK (sqr <= n)

{ print (n, sqr, odd, cnt);

cnt := cnt+1;

odd := odd+2;

sqr := sqr+odd;

JIK
}
print (n, sqr, odd, cnt);

Guarantee: J cnt ^2 <= n & n < (cnt+1) ^2 K
}

Exercise 9.17 Exhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program binary-product

main(a, b: nat)

{ var dig, cnt, res: int;

dig := a;

cnt := b;

res := 0;

while JIK (cnt != 0)

{ print(a, b, dig, cnt, res);

if (cnt % 2 == 1) {
res := res + dig;

cnt := cnt - 1;

} else {
dig := 2*dig;

cnt := cnt / 2;

}
JIK

}
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print(a, b, dig, cnt, res);

Guarantee: J res = a*b K
}


