
 

 CS2500 Exam 2  

Name:     ___________________________________ 

Student Id (last 4 digits):  ___________________________________ 

 

- Write down the answers in the space 

provided.  

- You may use the usual primitives and 

expression forms, including those suggested 

in hints; for everything else, define it.  

- The phrase “design this function/program” 

means that you should apply the design 

recipe. You are not required to provide a 

template unless the problem specifically asks 

for one. Be prepared, however, to struggle 

with the development of function bodies if 

you choose to skip the template step. 

 

 

 

Good luck!  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem  Points  out of  

1   8 

2   10  

3   10 

4   10  

Extra  5  

Total   38  



 1 

Problem 1. Suppose we have the following list: 

 
 (define x ‘((a b) (1 2) (3 4) (5 6))) 

 

 

What does each of the following expressions produce? 

 
a. (map rest x) 

 

 

 

 

 

 

 

b. (filter cons? x) 
 

 

 

 

 

 

 

c. (andmap symbol? (map first x)) 
 

 

 

 

 

 

 

d. (foldr + 0 (apply append (rest x))) 

 

 
 



 2 

Problem 2.  

Study the definition for foo below, and give it a general contract.  

 

 
(define (foo g f par xs) 

  (cond  

    [(empty? xs) empty] 

    [(g (first xs))  

        (cons (f (first xs) par)  

              (foo g f par (rest xs)))] 

    [else (foo g f par (rest xs))])) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3 

Problem 3. Due to an unfortunately timed bug, some of DrRacket's built in loop 

functions have become unreliable the night before your assignment is due! The 

(partial) good news is that the foldr function still works. 

 

It would be really handy to use andmap in your assignment. Since you don't have 

time to wait for a DrRacket patch to be developed that will fix the issue, you will 

have to define it yourself. Fortunately, you are a good enough programmer to 

realize that you can write andmap rather simply using foldr. You may use 

lambda or local, if needed. 

 

 

Design andmap using foldr. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4 

Problem 4. Consider the following data definition:  

 
(define-struct student (name lab awake? quizzes)) 

;; A Student is a (make-student String Symbol 

;;                           Boolean [Listof Number]) 

;; where:  lab      - one of ‘mon or ‘wed 

;;   awake?   - true if the student asks 

;;                   and answers questions in class 

;;        quizzes   - the list of grades assigned 

;;                   for the class quizzes 

 

 

a) Design a function, sleepy-students, that consumes a [Listof 
Student], and returns the [Listof Student] that are not awake. Use a 

loop function (map, foldr, filter, etc). 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5 

 

b) Design a function, list-names, that takes a [Listof Student]and 

returns a list of their names. Use a loop function (map, foldr, filter, etc). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

Problem 5. Consider the following data definitions: 

 
;; a Record is a  

;; (make-record String [Listof Number]) 

(define-struct record (name log)) 

;; where log is a [Listof Number] representing a  

;; list of exam grades 

 

Here are two examples: 
(define r1 (make-record "Mary" '(80 90))) 

(define r2 (make-record "Bob" '(82 85))) 

 

;; an Exam is a (make-exam String Number) 

(define-struct exam (name grade)) 

 

Here are two examples: 
(define e1 (make-exam "Mary" 92)) 

(define e2 (make-exam "Bob" 89)) 

 

Design a function add-grade that consumes a [Listof Record] and a 

[Listof Exam] and adds the exam grade to each student's [Listof Grade] 

ASSUMPTION: the two lists are of equal length 

ASSUMPTION: the student names in the two lists are in the same order 

 

Here is a test to help you understand what the function should do: 
(check-expect  

    (add-grade (list r1 r2) (list e1 e2)) 

       (list (make-record "Mary" '(92 80 90)) 

             (make-record "Bob" '(89 82 85)))) 

 

 

 
 
 

 

 

 

 

 

 

 

 


