
CS 2500, Spring 2014

Problem Set 11

__

Due date: 7pm Tuesday April 1, 2014

Programming Language: Intermediate Student Language with Lambda

Purpose: to practice designing functions that consume two complex inputs.

You must follow the design recipe. The graders will look for data definitions, signatures,

purpose statements, examples/tests, and properly organized function definitions. For the

latter, you must design templates. You do not need to include the templates however. If

you do, make sure to comment them out.

Problem 1. Exercise 318 from HtDP/2e

Problem 2. Exercise 319 from HtDP/2e

Problem 3. Exercise 320 from HtDP/2e

Problem 4. Exercise 326 from HtDP/2e

Problem 5. Exercise 327 from HtDP/2e

Problem 6. Exercise 329 from HtDP/2e

Problem 7. Exercise 326 from HtDP/2e

Problem 8. Here are two data definitions:

(define-struct leaf ())

(define-struct growth (next))

(define-struct fork (left right))

;; Tree is one of:

;; -- (make-leaf)

;; -- (make-growth Tree)

;; -- (make-fork Tree Tree)

;; Direction is one of:

;; -- 'left

;; -- 'right

a) Develop the template for a function that consumes a Tree and a [List-of
Direction].

b) Design the function navigate. It consumes a Tree and a [List-of

Direction]. It navigates the tree at the specified places, that is, for a 'growth', it

goes straight (because there is no choice). For a 'fork', it follows the next direction. If

there are no more directions, it returns the sub-tree at that point. Decide what should

happen if a leaf is reached but the [List-of Direction] is not empty.

Problem 9. Recall that an S-expression is defined as:

; An S-expr (S-expression) is one of:

; – Atom

; – SL

; An SL [List-of S-expr] is one of:

; – empty

; – (cons S-expr SL)

; An Atom is one of:

; – Number

; – String

; – Symbol

a) Develop the templates for a function that consumes two S-expressions

b) Design a program that will determine if two S-expressions contain the same

atoms regardless of the ordering. For example:
(contains-same-atoms? '(1 2 3 () ("r" b))

'("r" 1 (2) 3 b))

 would return true.

 Do not solve this by flattening the S-expressions into[List-of Atom] first.

