CS 2500, Lab 7—Natural number recursion

e Work in pairs
e Change roles often!

e Follow the design recipe for every problem.

Part I: Recursion over natural numbers

A recursive data structure we use very often in programming is the collection of natural numbers:

;; A Nat (natural number) is one of:
55 =0
HH (add1 Nat)

o

predicate: zero?

;; (addl n) predicate: positive?
;; (addl n) accessor: subl

Ezxercise 1: What is the template for Nat?

In the following exercises we will redefine some built-in arithmetic functions to get practice writing
recursive functions over Nats, so don’t simply reuse the built-in functions.

Exercise 2: Design a function nat-even? that returns true if the given Nat is even.
You may only use subl (and possibly not). I.e., do not use even?, odd?, modulo, etc.

Exercise 3: Design a function double that doubles the given Nat. Again, you may only use addl
and subl (and double of course).

Ezercise 4: Design a function down-from that takes a Nat n and returns the list of Nats counting
down from n. For example, (down-from 3) = (list 3 2 1 0).

Ezxercise 5: Design a function repeat that takes a Nat n and a String s and returns a list that
repeats s n times. For example, (repeat "buffalo" 8) = (list "buffalo" "buffalo"
"buffalo" "buffalo" "buffalo" "buffalo" "buffalo" "buffalo"). Do not use make-
list! (though it’s good to know about).

Ezercise 6: Design a function nat+ that takes two Nats and computes their sum. (Use recursion,
not the built-in + function.)



Ezercise 7: Design a function nat* that takes two Nats and computes their product. (Again use
recursion, not the built-in * function, though you may use your nat+ now.)

Ezercise 8: Design a function sqware that squares the given Nat (Note the intended name mis-
spelling!) WITHOUT using nat*! Again, you may only use add1, subl, double, and nat+
(and sqware of course).

Part II: Concentric rings in the World

Some basic setup:

(require 2htdp/image)
(require 2htdp/universe)

(define width 400)
(define height 400)

In this animation, a World is a collection of Rings, each of which has a size and a location.
; A World is a [listof Ring]

; A Ring is a (make-ring Nat Posn)
(define-struct ring (size center))

Exercise 9: Design a grow-ring function that increases a Ring’s size by 1.

Exercise 10: Design a little draw-ring function that takes a Nat r as input and simply returns
an image of a circle with radius 7. (We’ll make this more interesting later.)

Exercise 11: Design a place-ring function that draws a Ring into the given Scene at the Ring’s
location. (Use draw-ring here so that we can modify it later to change the animation.)

Exercise 12: Design a draw function that renders a World as a Scene by drawing all the Rings in
their correct locations.

Exercise 13: Design a mouse function that, when the mouse is clicked, adds a 0-size Ring to the
World at the location of the click.

Exercise 14: Design a tick function that grows all the Rings in the World using grow-ring.



Put it all together and see what you get:

(big-bang empty
(on-tick tick .25)
(to-draw draw)
(on-mouse mouse))

Ezxercise 15: Now let’s redesign the draw-ring : Nat -> Image function. Instead of making an
image of a solid circle, let’s make concentric rings of many circles. We can achieve this by
overlaying many circles of increasing sizes:

(overlay ‘ ‘ ) = @

Natural number recursion should serve you well here...



