
CS 2500, Lab 4: Structures and Unions

New lab partners, new friends
It is time to switch lab partners! You may not work with a partner with whom you have previously
worked this semester. Choose someone you haven’t already worked with and relocate so that the
two of you are sharing a single workstation.

Switching pilot and co-pilot
In previous labs you were switching pair-programming roles in between exercises. In this lab and
in future labs, you will switch roles at regular intervals throughout the lab. The teaching assistants
and tutors will announce that it is time to switch roughly every fifteen minutes.

Don’t delete your work!
In previous labs some students deleted their solutions for exercises after completing themdon’t do
this! It is common for exercises to make use of functions or templates defined in earlier exercises.

DR uber alles
Remember to practice using the design recipe when designing programs!

Develop means Design Recipe
Use it, love it.

Part I: Last week on CS 2500

Exercise 1: In this class, each lab section consists of a section number (1–6), a head TA, and a
supporting TA. Design a data definition and define a data structure for representing lab
sections. Give three examples of lab sections. (The course website has a table of all the lab
sections and lists the names of all the TA’s.)

Develop a program that consumes a lab section and returns a descriptive string similar to
“CS2501 Section 2: Boboila, Simona”.

Exercise 2: Develop a function that computes the result of the formula (a+ b)2/(a− b)2. Give an
example of using the function. For your example, (1) write down the evaluation steps in the
definitions window, and then (2) use the stepper to compare how you evaluated the formula
with how DrRacket evaluated the formula. Unless you have made a mistake, both ways of
calculating the result of the formula should give the same vaule.

http://www.ccs.neu.edu/course/cs2500sp12/design-recipe-v2.pdf
http://www.ccs.neu.edu/course/cs2500sp12/labs.html
http://www.ccs.neu.edu/course/cs2500sp12/labs.html
http://www.ccs.neu.edu/course/cs2500sp12


Part II: This week on CS 2500—Structures and unions

Hint: in the following exercises give names to your examples so you can use them again later.

Exercise 3: A rock band has a name and consists of a singer, a guitarist, a bassist, and a drummer.
A jazz band has a name and consists of a trumpeter, a bassist, and a drummer. A pop band
has a name and consists of a singer and a two synthesizer players. A band is either a rock
band or a jazz band or a pop band. Write one data definition for each kind of band and
then write a data definition for a band in general. Produce three examples of a band (one
for each kind). Write a template for a function that consumes a band.

Exercise 4: A studio album has a name and a year of publication. A live album has a name, a year
of recording, and a year of publication. A music album is either a live or a studio album.
Write only one data definition to describe a music album. Produce two examples of a mu-
sic album (one for each kind). Write a template for a function that consumes a music album.

Exercise 5: There are two kinds of unpublished music albums from the perspective of a music
label—those that are completed and those that aren’t. Both completed and uncompleted
albums have a serial number, but those albums that are completed also have a name and
a release date. Design a data definition to describe an unpublished music album. Produce
two examples of an unpublished music album (one for each kind). Write a template for a
function that consumes an unpublished music album.

Exercise 6: Develop a function that consumes an unpublished album and a serial number and
checks whether the album matches the serial number.

Exercise 7: Develop a function that consumes an unpublished music album, a date of release, and
a name. If the album is not completed it constructs an instance of a completed album using
the information given as input to the function. If the album is already completed it returns
it unchanged.

Part III: World with structures

In the following exercises, represent the world as a struct with two posns. The first posn represents
the current position of a blue circle, and the second posn represents the current position of a red
circle. When the user clicks the mouse the red circle will immediately move to where they clicked,
and over time the blue circle will move to meet it.



Exercise 8: Design a function mouse-handler to react to mouse events. It consumes four inputs:
a World, an x coordinate, a y coordinate, and a MouseEvent as described in MouseEvent.
When the MouseEvent is “button-down” the function mouse-handler should create a World
where the first posn is the same as the given World’s first posn and the second posn is the
position of the mouse click. On any other mouse event (“button-up”, “drag”, “move”, “en-
ter”, or “leave”) the function mouse-handler should return the given World unchanged.

Exercise 9: Design a function tick-tock to react to clock events. The purpose of the function
is to gradually equate two posns as the clock progresses. The function consumes a World
and produces a new World where both coordinates x and y of the first posn are increased
or decreased by 1 (or 0) so that they approach the coordinates of the second posn.

For example, if the input World is ((1,3), (5,1)) then tick-tock should return the new
World ((2,2), (5,1)).

Exercise 10: Design a function world-draw that consumes a World and returns a 300 300 scene
with a solid blue circle of radius 15 at the position represented by the first posn and a solid
red circle of radius 10 at the position represented by the second posn. When they overlap,
the red circle should appear on top of the blue circle.

Exercise 11: Use big-bang and the three functions you wrote to create an animation where you
click to place a red circle somewhere in the canvas and then a blue circle moves along the
canvas trying to reach the red circle. The initial position of the blue circle is determined by
how you choose to initialize the World. You’ll need on-mouse, on-tick, and to-draw.

Exercise 12: Extend the definition of the world to include a String that is one of “red”, “yellow”,
or “green”. Modify world-draw to use this String to determine the color of the circle we
draw when the user clicks. Also write a function cycle-color to cycle through the colors:
“red” → “yellow” → “green” → “red”. Using this function, modify mouse-click to cycle
the color when the user clicks.

That’s All Folks

If you had trouble finishing any of the exercises in the lab or homework, or just feel like you’re
struggling with any of the material, please feel free to come to office hours and talk to a TA or
tutor for additional assistance.

http://docs.racket-lang.org/teachpack/2htdpuniverse.html#%28tech._mouseevent%29
http://www.ccs.neu.edu/course/cs2500sp12/

