
CS 2500, Spring 2012
Problem Set 7

__
Due date: Monday, February 27 @ 11:59 pm

Programming	
 Language:	
 Beginning	
 Student	
 Language	
 with	
 List	
 Abbreviations	

For Problem Set 3 and later, homework is submitted via the automated homework server.
Note: Hardcopy submissions not accepted.

You	
 must	
 work	
 on	
 this	
 problem	
 set	
 in	
 pairs.	
 Homework	
 partners	
 have	
 been	
 chosen	

randomly	
 and	
 posted	
 on	
 the	
 Piazza	
 discussion	
 board.	
 You	
 must	
 submit	
 the	

homework	
 with	
 your	
 partner.	
 There	
 will	
 be	
 a	
 penalty	
 for	
 submitting	
 without	
 your	

partner.	
 	

You	
 must	
 follow	
 the	
 design	
 recipe	
 in	
 your	
 solutions:	
 graders	
 will	
 look	
 for	
 data	

definitions,	
 contracts,	
 purpose	
 statements,	
 examples/tests,	
 and	
 properly	
 organized	

function	
 definitions.	
 For	
 the	
 latter,	
 you	
 must	
 design	
 templates,	
 but	
 be	
 sure	
 to	

comment	
 them	
 out.	

Task:

Develop the Frogger game. Here is a link to a free version of Frogger for those unfamiliar
with the game: http://www.happyhopper.org. In this game, the player is a frog who tries
to move from the bottom of the screen to the top of the screen. The screen is divided into
rows. The player starts in the bottom row, crosses five rows of traffic, and wins if they
reach the top row.

In the traffic rows, the player must not collide with any of the vehicles present in these
rows. The traffic alternates direction and includes 4 vehicles per road. If the player hits a
vehicle, the player loses and the game ends. When a vehicle passes off the edge of the
screen, a new entity of the same type is created on the opposite edge, so that there are
always the same number of vehicles, and they are all evenly spaced.

The player can move his character in four ways: up, down, left and right. Develop your
own data definitions and structures for frogs, and vehicles (and any auxiliary ones you
might need, like worlds).

The following data definitions may or may not be useful (and indicative of the kind of
operations you might want to develop) for writing this program:

;;;
;; Data Definitions
;; A Player is a (make-player Number Number Direction)
(define-struct player (x y dir))

;; A Vehicle is a (make-vehicle Number Number Direction)
(define-struct vehicle (x y dir))

;; A Set of Vehicles (VSet) is one of:
;; - empty
;; - (cons Vehicle VSet)

;; A World is a (make-world Player VSet)
;;The VSet represents the set of vehicles moving across the screen
(define-struct world (player vehicles))

You should think about how you will determine whether the player has been hit by a
vehicle. You may want to use something like the following functions:

;; in-range?: Number, Number, Number -> Boolean
;; is n1 within range of n2?
(define (in-range? n1 n2 range)
 (and (< n1 (+ n2 range))
 (> n1 (- n2 range))))

;; hit?: Player, Vehicle -> Boolean
;; was the player hit by the vehicle?
(define (hit? player vehicle)
 (and (= (player-y player)
 (vehicle-y vehicle))
 (in-range? (player-x player)
 (vehicle-x vehicle)
 (+ (/ (image-width PLAYER) 2)
 (/ (image-width VEHICLE) 2)))))

Some advice:

While it is possible to write Frogger to operate over a grid, it makes the cars and river
entities move in a somewhat clunky manner. You might be better off subdividing the
screen vertically into rows, but leaving the horizontal positioning to simply pixels.

Don’t include images in your assignment. You can represent players and vehicles using
image functions such as circle, triangle, square, overlay, etc.

You may implement other features, if you like (e.g., multiple lives, vehicles of varying
lengths, and/or a river). However, extra features won’t save you from points taken off if
your code has bugs or isn’t well written. You will not receive 100% credit simply for
having code that works. For full credit, your code must work and be well written. So you
should put your effort into writing clean, readable, bug-free code.

You will be upgrading the game to full Frogger in a future assignment. So effort
expended in making sure that your code is clean and well-written will be rewarded when
you have to extend it later – it is quite difficult to modify and extend code that is a
snarled-up, confused pile of chaos.

As always, you should use the Design Recipe help get your code written.

Start early. It will take you time to work out the assignment.

