
CS 2500, Spring 2012
Problem Set 3

__
Due date: January 29, 2012 at midnight

For Problem Set 3 and later, homework is submitted via the automated homework server.
Note: Hardcopy submissions not accepted. Email submissions not accepted.

The goal of this problem set is to practice designing data representations using structures
and functions for processing such forms of data. Furthermore, you MUST follow the
design recipe and the guidelines when you develop functions.

Part 1:

HtDP Problems: 6.4.2, 6.4.3, 6.5.2

Part 2:

Here is a data definition for a traffic light:

(define-struct tlight (radius color))
;; Tlight = (make-tlight Number String)
;; Constraints:
;; The string is either “red” “yellow” or “green”

Use these definitions for the following exercises:

1. Design the function change from Tlight to Tlight. It changes the light
from red to green to yellow to red again.

2. Design the function draw-light, which draws a circle from a tlight.
3. Optional: After you have developed these functions, you may wish to add the

following lines to your program:

(big-bang (make-tlight 60 “red”)
 (on-tick change 0.5)
 (to-draw draw-light))

If you do, be sure to delete them before you turn in your solution. We will
subtract points if you leave them in.

Part 3:

Develop a program that allows one to control the movement of a ball across the screen.
The ball can move on straight lines only, that is, up, down, left, or right. Pressing the
arrow keys on the keyboard changes the ball's location.

1. Develop a data representation for the current position of the ball. The position is
best described with a pair of positive integers.

2. Develop a data representation for velocity of the ball. You may assume that the
ball always moves exactly 10 pixels at a time but remember that velocity also
includes the direction of the movement.

3. Develop a data representation for the ball.
4. The function ball-image is written for you. It consumes (the representation of)

a ball and produces a rectangle of 300 x 300 pixels with a red dot (diameter 10
pixels) placed at the ball's position.

(define a-ball (circle 5 "solid" "red"))

(define (ball-image b)
 (place-image a-ball
 (posn-x (ball-position b))

(posn-y (ball-position b))
 (empty-scene 300 300)))

5. Design the function ball-next, which consumes (the representation of) a ball
and create a ball that represents where it will be after one "tick."

6. Design a function ball-change, which consumes a ball and a "key event,"
which represents the user hitting a key on the keyboard. If the key event
represents the user hitting the up-arrow key, then ball-change produces a new
ball which is just like the input ball, except that the new ball is moving upward;
similarly for key events representing the left-, right- and down-arrow keys: they
cause the resulting ball to be one that is moving left, right, or down, respectively.
Passing any other keystroke to ball-change causes the ball to be unchanged.
You can read about key events in the help desk—the on-key clause of big-
bang is a good place to start.

7. Optional: After you have developed these functions, you may wish to add the
following lines to your program:
 (big-bang some-initial-ball
 (on-tick ball-next 1/28)

 (to-draw ball-image)
 (on-key ball-change))

If you do, be sure to delete them before you turn in your solution. We will
subtract points if you leave them in.

	

