
CS 2500, Spring 2012
Problem Set 10

__
Due date: Friday, April 6 @ 11:59pm

Programming Language: Intermediate Student Language with Lambda

For Problem Set 3 and later, homework is submitted via the automated homework server.
Note: Hardcopy submissions not accepted.

You must work on this problem set in pairs. You must submit the homework with your
partner. There will be a penalty for submitting the assignment without your partner.

You must follow the design recipe in your solutions: graders will look for data
definitions, contracts, purpose statements, examples/tests, and properly organized
function definitions. For the latter, you must design templates. You do not need to
include the templates with your homework, however. If you do, comment them out.
Problem 1.

The following is a definition of a sort function

;; sort : Listof[Number] -> Listof[Number]
;; to construct a list with all items from alon in increasing order
(define (sort-a alon)
 (local ((define (insert an alon)
 (cond
 [(empty? alon) (list an)]
 [else (cond
 [(< an (first alon)) (cons an alon)]
 [else (cons (first alon)
 (insert an (rest alon)))])])))
 (cond
 [(empty? alon) empty]
 [else (insert (first alon) (sort-a (rest alon)))])))

Design an abstracted version of the sort-a function which consumes the comparison
as an additional argument and uses a loop function.
Use this function to design sort-ascending and sort-descending, which sort a
Listof[Number] in ascending and descending order, respectively.

Problem 2:
DrRacket has lots of great abstract functions for processing lists (pg. 313, Sect. 21.2,
or the online version).

Given the following data definitions:
;; A Grade is: (make-grade Symbol Number)
(define-struct grade (letter num))

http://www.htdp.org/2003-09-26/Book/curriculum-Z-H-27.html#node_sec_21.2
http://www.ccs.neu.edu/course/cs2500sp12/guidelines.html

;; The Symbol in a Grade represents

;; 'A >= 90
;; 'B >= 80
;; 'C >= 70
;; 'D >= 60
;; 'F < 60

;; A [Listof Grades] ...
(define grades
 (list (make-grade 'D 62) (make-grade 'C 79) (make-grade 'A 93)
 (make-grade 'B 84) (make-grade 'F 57) (make-grade 'F 38)
 (make-grade 'A 90) (make-grade 'A 95) (make-grade 'C 76)
 (make-grade 'A 90) (make-grade 'F 55) (make-grade 'C 74)
 (make-grade 'A 92) (make-grade 'B 86) (make-grade 'F 43)
 (make-grade 'C 73)))

Design the requested functions to manipulate Grades. You must use the given list as
one of your tests.

For each you may use a local function or an anonymous (lambda) function.

Note: if you do not use a DrRacket loop function, you will not receive credit for the
sub-problem!

1. Design the function log->los that converts a [listof Grade] into a
[Listof Symbol] that contains just the letter grade.

2. Design the function average-grade that finds the average (number)
Grade in a [Listof Grade].

3. Design a function all-above-79 that returns a list of only the grades that
are above 79.

4. Design the function all-pass? that checks to see if all the Grades in a given
list are not 'F.

5. Finally design the function bonus that adds 5 to all of the Grades in a given
list, and updates the letter portion of the Grade if it changes. Your function
must return a [Listof Grade]!

HtDP Problems:
26.1.1, 26.1.2

