
CS2500 Exam 2 Rubric — Fall 2013
12 POINTS

Problem 1 (i) Identify the correct/incorrect data definitions below and explain in
fewer than 15 words why they are correct/incorrect.

1. (define-struct snake (head tail))

;; A Snake is one of:

;; -- (make-snake Posn Snake)

2. (define-struct 3tree (left middle right))

;; A TTree is one of:

;; -- Symbol

;; -- (make-3tree TTree TTree TTree)

(1)
Snake

1
is
2

ill-defined
3 because it

4
is
5

impossible
6

to
7

generate
8

examples
9 .

(2)
TTree

1
is
2

correct
3

because
4

it
5

uses
6

built-in
7

forms
8

of
9

data
10

and
11

constructors
12 .

1

(ii) Data definitions serve two roles: data construction and data recognition.

1. Construct one example per data definition:

(define-struct container (name content file))

;; A Container is a

;; (make-container String [List-of Box] File).

;; A Box is one of:

;; -- a Container

;; -- a File

;; A File is a String.

2. Name or construct an instance of Fun:

;; Fun is a [String Number -> Number]

;; (1) Containers

(define a-file

"some file")

(define a-box

(make-container "hello" (list a-file) "a"))

(define a-container

(make-container "hello" (list a-box a-file) "a"))

;; (3) Funs

string-ref

or

(define (f s n) n)

2

8 POINTSProblem 2 Develop templates for these data definitions:

(define-struct leaf (val))

(define-struct straight (next))

(define-struct branch (left right))

;; A [Forest X] is one of:

;; -- empty

;; -- (cons [Tree X] [Forest X])

;;

;; A [Tree X] is one of:

;; -- (make-leaf X)

;; -- (make-straight [Tree X])

;; -- (make-branch [Tree X] [Tree X])

;;

;;

;;

;;

(define (template/forest f)

(cond

[(empty? f) ...]

[(cons? f)

(... (template/tree (first f)) ...

... (template/forest (rest f)) ...)]))

(define (template/tree t)

(cond

[(leaf? t) (... (leaf-val t) ...)]

[(straight? t)

(... (template/tree (straight-next t)) ...)]

[(branch? t)

(... (template/tree (branch-left t))

... (template/tree (branch-right t)) ...)]))

3

16 POINTSProblem 3 Design a program called rainfall that consumes a list of numbers rep-
resenting daily rainfall amounts as entered by a user. The list may contain the
number -999 indicating the end of the data of interest. Produce the average of the
non-negative values in the list up to the first -999 (if it shows up).

;; [List-of Number] -> NonnegativeNumber

;; compute the average of the non-negative numbers in l up to -999

(check-expect (rainfall ’(4 2 -3 -999 2 -999)) 3)

(check-expect (rainfall ’(4 2 -3)) 3)

(check-expect (rainfall ’(-3)) 0)

(define (rainfall l)

(average (nn-upto-999 l)))

;; [List-of Number] -> [List-of Number]

;; select the non-negative numbers up to -999 (if it shows up)

(check-expect (nn-upto-999 ’(4 2 -3 -999 2 -999)) ’(4 2))

(define (nn-upto-999 l)

(cond

[(empty? l) ’()]

[else (cond

[(= (first l) -999) ’()]

[(< (first l) 0) (nn-upto-999 (rest l))]

[else (cons (first l) (nn-upto-999 (rest l)))])]))

;; [List-of Number] -> [List-of Number]

;; average the numbers in l (if any); else: 0

(check-expect (average ’()) 0) ;;

(check-expect (average ’(4 2)) 3)

(define (average l)

(if (empty? l) 0 (/ (foldr + 0 l) (length l))))

4

14 POINTSProblem 4 Here is a data definition for lists that contains at least one item:

;; [LOX1 X] is one of:

;; -- (cons X empty)

;; -- (cons X [LOX1 X])

(i) Design the function join2, which consumes two pieces of data: l, an instance
of [LOX1 X], and x, an X. It creates another list by inserting x between all pairs of
neighboring elements in l (if there are any).

;; [LOX1 X] X -> [List-of X]

;; insert x between any two neighboring items on lox

(check-expect (join2 ’("a" "b") ",") ’("a" "," "b"))

(check-expect (join2 ’("a" "b" "c") ",") ’("a" "," "b" "," "c"))

(define (join2 lox x)

(cond

[(empty? (rest lox)) lox]

[else (cons (first lox) (cons x (join2 (rest lox) x)))]))

5

(ii) Design the function join, which consumes an arbitrary list l of Xs and an
instance of X. It inserts the latter between all pairs of neighboring elements in l (if
there are any).

;; [List-of X] X -> [List-of X]

;; insert y between any two neighboring items on lox

(check-expect (join ’(a b c) 99) ’(a 99 b 99 c))

(check-expect (join ’(a) 99) ’(a))

(check-expect (join ’() 99) ’())

(define (join lox y)

(cond

[(empty? lox) lox]

[else #;"now we know lox in [LOX1 X]" (join2 lox y)]))

6

8 POINTSProblem 5 Design zist. The function consumes two lists of Posns. For each
pair of corresponding Posns on the two lists, it computes the geometric distance.
If there is a Posn on one list but no corresponding Posn on the other list, it com-
putes the distance to the origin.

The geometric distance between two Posns is computed as follows:

;; Posn Posn -> NonnegativeNumber

;; computes the distance between two points

(check-expect (distance (make-posn 1 1) (make-posn 4 5)) 5)

(define (distance p q)

(sqrt

(+ (sqr (- (posn-x p) (posn-x q)))

(sqr (- (posn-y p) (posn-y q))))))

(define ORIGIN (make-posn 0 0))

;; [List-of Posn] [List-of Posn] -> [List-of NonnegativeNumber]

;; compute the list of distances between two corresponding Posn

;; use ORIGIN as default point

(check-expect

(zist ‘(,(make-posn 1 1)) ‘(,(make-posn 4 5))) ’(5))

(check-expect

(zist ‘(,(make-posn 1 1) ,(make-posn 1 0)) ‘(,(make-posn 4 5))) ’(5 1))

(check-expect

(zist ‘(,(make-posn 1 1)) ‘(,(make-posn 4 5) ,(make-posn 1 0))) ’(5 1))

(define (zist k l)

(cond

[(and (empty? k) (empty? l)) ’()]

[(and (cons? k) (empty? l))

(cons (distance (first k) ORIGIN) (zist (rest k) empty))]

[(and (empty? k) (cons? l))

(cons (distance (first l) ORIGIN) (zist (rest l) empty))]

[else

(cons (distance (first k) (first l)) (zist (rest k) (rest l)))]))

7

8 POINTSProblem 6 Inspect the following data definition:

(define-struct leaf (val))

(define-struct fork (left right))

(define-struct straight (next))

;; An NTree is one of:

;; -- (make-leaf Number)

;; -- (make-fork NTree NTree)

;; -- (make-straight NTree)

Design the function split. It consumes two pieces of data: t, an NTree, and r,
a Number. It creates a new NTree by turning all leafs in t into a branch with a
leaf in each field:

• If r is smaller than the val field, r goes into the new left leaf and the val
field becomes the right sub-tree.

• If r is greater than the val field, r goes into the new right leaf and the val
field becomes the left sub-tree.

You may assume that r is not equal to any Number in t.

;; NTree Number -> NTree

;; grow tree by splitting all leafs

(check-expect

(split (make-leaf 1) 0) (make-fork (make-leaf 0) (make-leaf 1)))

(check-expect

(split (make-straight (make-leaf 1)) 0)

(make-straight (make-fork (make-leaf 0) (make-leaf 1))))

(check-expect

(split (make-straight (make-fork (make-leaf 0) (make-leaf 2))) 1)

(make-straight

(make-fork

(make-fork (make-leaf 0) (make-leaf 1))

(make-fork (make-leaf 1) (make-leaf 2)))))

8

(define (split t r)

(cond

[(leaf? t)

(if (< (leaf-val t) r)

(make-fork t (make-leaf r))

(make-fork (make-leaf r) t))]

[(fork? t)

(make-fork (split (fork-left t) r) (split (fork-right t) r))]

[else

(make-straight (split (straight-next t) r))]))

9

