CS 2500 Exam 2 HONORS Solutions - Fall 2013

Problem 1 Design the function concat, which consumes a list of lists and appends them all to produce a single list. Give concat its most general signature and define it using a loop function. You may not use append or apply.

```
;; [List-of [List-of X]] -> [List-of X]
;; Concatenate all the lists in lolox into a single list
(define (concat lolox)
    (foldr (lambda (lox ans)
                        (foldr cons ans lox))
            empty lolox))
(check-expect (concat (list)) '())
(check-expect (concat (list '())) '())
(check-expect (concat (list '(1 2) '())) '(1 2))
(check-expect (concat (list '() '(3 4))) '(3 4))
(check-expect (concat (list (list 1 2) (list 3) (list 4 5)))
    (list 1 2 3 4 5))
```

Problem 2 A sequence represents a series of values. Sequences may be finite or infinite. In this problem, we'll work with infinite sequences.

Here are three examples of infinite sequences:

index	0	1	2	3	\ldots
positive integers	1	2	3	4	\ldots
even natural numbers	0	2	4	6	\ldots
lists of 'a	$\prime()$	$\prime(a)$	$\prime\left(\begin{array}{ll}a & a\end{array}\right)$	$\prime\left(\begin{array}{ll}a & a \\ a\end{array}\right)$	\ldots

Here is a data definition for representing infinite sequences:

```
;; A [Sequence X] is a [Natural -> X]
;; interpretation: when the function is applied to an
; i index (a Natural), it gives back the element at
;; that index.
```

Here is an example of a [Sequence Natural], the even natural numbers:

```
(define even-nats (lambda (i) (* 2 i)))
```

Here is a convenient function for producing a list with the first n elements of an infinite sequence:

```
;; seq->listn : [Sequence X] Natural -> [List X]
;; Build a list with the first n elements of the
;; sequence s
(define (seq->listn s n)
    (map s (build-list n (lambda (x) x))))
```

For example,

```
> (seq->listn even-nats 10)
(list 0 2 4 6 8 10 12 14 16 18)
```

You may use even-nats and seq->listn for tests, but they should not be used otherwise.
(a) (8 pts) Design the following functions:

- seq-head, which consumes a sequence s and returns its 0th element.
- seq-rest, which consumes a sequence s and returns a sequence with all but the 0th element of s.

```
;; seq-head : [Sequence X] -> X
;; Get the Oth element in the sequence
(define (seq-head s)
    (s 0))
(check-expect (seq-head even-nats) 0)
```

;; seq-rest : [Sequence X] -> [Sequence X]
; ; Produce a sequence with all but the 0th element of s
(define (seq-rest s)
(lambda (i) (s (add1 i))))
(check-expect (seq->listn (seq-rest even-nats) 5)
(list 2468 10))
(b) (10 pts) A series for a sequence s gives the sums of the elements in s. More precisely, adding the 0th through i th elements of an infinite sequence s forms the i th element of another infinite sequence, called a series.

For example, the series for the sequence of positive integers $1,2,3,4, \ldots$ is: $1,3,6,10, \ldots$

Design the function seq->series, which consumes a [Sequence X], and a function for adding Xs (with signature $[\mathrm{X} \quad \mathrm{X} \rightarrow \mathrm{X}]$), and produces a series for the given sequence.

```
;; seq->series : [Sequence X] [X X -> X] -> [Sequence X]
;; Given a sequence s of Xs, and a function addx that can
;; add two Xs, produce the series for sequence s.
(define (seq->series s addx)
    (lambda (i)
            (local ((define (sumx i)
                                    (cond [(zero? i) (s i)]
                                    [else (addx (s i)
                                    (sumx (sub1 i)))])))
            (sumx i))))
(check-expect (seq->listn (seq->series even-nats +) 5)
                                    (list 0 2 6 12 20))
```

```
Alternative solution:
```

Alternative solution:
(define (seq->series s addx)
(define (seq->series s addx)
(lambda (i)
(lambda (i)
(cond [(zero? i) (s i)]
(cond [(zero? i) (s i)]
[else (addx (s i)
[else (addx (s i)
((seq->series s addx) (sub1 i)))])))

```
                                ((seq->series s addx) (sub1 i)))])))
```

Problem 3 Consider the following data definition for finite sequences:

```
;; A [Maybe X] is one of:
;; - 'undef
; ; - X
;; A [FiniteSeq X] is a [Sequence [Maybe X]]
;; Constraint: there exists some index i>0 such that
;; - no elements at indices [0,i) equal 'undef
;; - all elements at indices >= i equal 'undef
```

Informally, the above data definition allows us to represent a finite sequence 1, 2 , 3 as the infinite sequence $1,2,3$, ' undef, ' undef, ' undef, . . .
(a) (2 pts) Define even-nats-4to8, an instance of [FiniteSeq Natural] that represents the sequence of even natural numbers in the range [4,8]-that is, the finite sequence $4,6,8$.

```
Either of the following is okay.
(define even-nats-4to8
    (lambda (i) (cond
                                    [(= i 0) 4]
                                    [(= i 1) 6]
                                    [(= i 2) 8]
                                    [else 'undef])))
(define even-nats-4to8
    (lambda (i) (if (< i 3)
                                    (+ (* 2 i) 4)
                        'undef)))
```

(b) (12 pts) Design the function fs -length, which consumes a finite sequence and two natural numbers lo and hi and produces the length of the finite sequence. Assume that lo < hi and that there exists an index i in the range [lo,hi) such that the element at index $i+1$ is 'undef but the element at index i is not.
For example, for the finite sequence even-nats-4to8 that you defined in part (a):

```
>(fs-length even-nats-4to8 0 100)
3
```

To get credit for this problem, you will need to use an efficient generative recursion design.

```
;; fs-length : [FiniteSeq X] Natural Natural -> Natural
;; Compute the length of the finite sequence fs, assuming
;; that the length is a number in the range (lo,hi].
;; Assume: lo < hi
;; Assume: there exist an index i in [lo,hi) such that
;; element at index i+1 is 'undef while the element at
;; index i is not.
;; Generative recursion
;; HOW: Determine midpoint between lo and hi. If element
;; at midpoint is 'undef then length between lo and mid;
;; otherwise length between mid and hi.
;;
;; TERMINATES for all possible finite sequences because
;; the recursive calls are guaranteed to receive smaller
;; sequences than the given s.
(define (fs-length s lo hi)
    (cond [(= (add1 lo) hi) hi]
        [else
            (local ((define mid (quotient (+ lo hi) 2))
                (define s@mid (s mid)))
                (cond [(and (symbol? s@mid) (symbol=? s@mid 'undef))
                    (fs-length s lo mid)]
                        [else
                                (fs-length s mid hi)]))]))
(check-expect (fs-length even-nats-4to8 2 3) 3)
(check-expect (fs-length even-nats-4to8 0 1000000) 3)
```

