I Fixed-Size Data

Programs are functions. Like functions, programs consume inputs and produce outputs. Unlike
the functions you may know, programs work with a variety of data: numbers, strings, images,
mixtures of all these, and so on. Furthermore, programs are triggered by events in the real world,
and the outputs of programs affect the real world. For example, a spreadsheet program may react
to an accountant’s key presses by filling some cells with numbers, or the calendar program on a
computer may launch a monthly payroll program on the last day of every month. Lastly, a
program may not consume all of its input data at once; instead it may decide to process data in
an incremental manner.

Definitions While many programming languages obscure the relationship between programs and
functions, BSL brings it to the fore. Every BSL program consists of several definitions, usually
followed by an expression that involves those definitions. There are two kinds of definitions:

* constant definitions, of the shape (define Variable Expression), which we encountered in
the preceding chapter; and

* function definitions, which come in many flavors, one of which we used in the Prologue.

Like expressions, function definitions in BSL come in a uniform shape:

(def-ine‘(/—'unctionName Variable ... l/ar7'abZe)/ S_“un(:tion header |

Expression, -
S——Jffunction body |

That is, to define a function, we write down

* “(define (7,

¢ the name of the function,

L]

followed by several variables, separated space and ending in)”,
* and an expression followed by “)”.

And that is all there is to it. Here are some small examples:

® (define (f x) 1)

e (define (g x y) (+ 1 1))

® (define (h xy z) (+ (x 2 2) 3))

Before we explain why these examples are silly, we need to explain what function definitions
mean. Roughly speaking, a function definition introduces a new operation on data; put
differently, it adds an operation to our vocabulary if we think of the primitive operations as the
ones that are always available. Like a primitive function, a defined function consumes inputs. The
number of variables determines how many inputs—also called arguments or parameters—a
function consumes. Thus, f is a one-argument function, sometimes called a unary function. In
contrast, g is a two-argument function, also dubbed binary, and h is a ternary or three-argument
function. The expression—often referred to as the function body—determines the output.

The examples are silly because the expressions inside the functions do not involve the variables.
Since variables are about inputs, not mentioning them in the expressions means that the
function’s output is independent of its input and therefore always the same. We don’t need to
write functions or programs if the output is always the same.

Variables aren’t data; they represent data. For example, a constant definition such as

http://www.ccs.neu.edu/home/matthias/HtDP2e/Draft/part one.html

Page 14 of 146

function
definition

2017-01-30

hami68744
Callout
function body

hami68744
Polygon Line

hami68744
Callout
function header

hami68744
Polygon Line

hami68744
Callout
function
definition

I Fixed-Size Data

(define x 3)

says that x always stands for 3. The variables in a function header, i.e., the variables that follow
the function name, are placeholders for unknown pieces of data, the inputs of the function.
Mentioning a variable in the function body is the way to use these pieces of data when the
function is applied and the values of the variables become known.

Consider the following fragment of a definition:
function header

(define (ff a) ...)

Its function header is (ff a), meaning ff consumes one piece of input, and the variable a is a
placeholder for this input. Of course, at the time we define a function, we don’t know what its
input(s) will be. Indeed, the whole point of defining a function is that we can use the function
many times on many different inputs.

Useful function bodies refer to the function parameters. A reference to a function parameter is
really a reference to the piece of data that is the input to the function. If we complete the
definition of ff like this

(define (ff a)

<——{function body

we are saying that the output of a function is ten times its input. Presumably this function is going
to be supplied with numbers as inputs, because it makes no sense to multiply images or Boolean
values or strings by 10.

For now, the only remaining question is how a function obtains its inputs. And to this end, we
turn to the notion of applying a function.

Applications A function application puts defined functions to work and it looks just like the
applications of a pre-defined operation:

e write “(”,

¢ write down the name of a defined function f,

* write down as many arguments as f consumes, separated by space,
* and add “)” at the end.

With this bit of explanation, you can now experiment with functions in the interactions area just
as we suggested you experiment with primitives to find out what they compute. The following
three experiments, for example, confirm that f from above produces the same value no matter
what input it is applied to:

> (f 1)

1

> (f "hello world")
1

> (f #true)

1

What does (f (circle 3 "solid" "red")) yield?

. . ,
See, even images as inputs don’t Remember to add (require 2htdp/image) to the
change f’s behavior. But here is what definitions area.

http://www.ccs.neu.edu/home/matthias/HtDP2e/Draft/part one.html

Page 15 of 146

2017-01-30

hami68744
Polygon Line

hami68744
Callout
function header

hami68744
Oval

hami68744
Callout
function body

I Fixed-Size Data

In this book, we use two pre-installed teachpacks to demonstrate the separation of data
processing from parsing: 2htdp/batch-io and and 2htdp/universe. Starting with this chapter,
we develop design recipes for batch and interactive programs to give you an idea of how
complete programs are designed. Do keep in mind that the libraries of full-fledged programming
languages offer many more contexts for complete programs, and that you will need to adapt the
design recipes appropriately

domain: program:
represent
intefpret

Figure 14: From information to data, and back

Given the central role of information and data, program design must start with the connection
between them. Specifically, we, the programmers, -must decide how to use our chosen
programming language to represent the relevant pieces of information as data and how we should
interpret data as information. Figure 14 explains this idea with an abstract diagram.

To make this idea concrete, let’s work through some examples. Suppose you are designing a
program that consumes and produces information in the form of numbers. While choosing a
representation is easy, an interpretation requires explaining what a number such as 42 denotes in
the domain:

* 42 may refer to the number of pixels from the top margin in the domain of images;
* 42 may denote the number of pixels per clock tick that a simulation or game object moves;

* 42 may mean a temperature, on the Fahrenheit, Celsius, or Kelvin scale for the domain of
physics;

* 42 may specify the size of some table if the domain of the program is a furniture catalog; or
* 42 could just count the number of characters in a string.
The key is to know how to go from numbers as information to numbers as data and vice versa.

Since this knowledge is so important

for everyone who reads the program, Computing scientists use “class” to mean something

we often write it down in the form of like a “mathematical set.”

comments, which we call data

definitions. A data definition serves two purposes. First, it names a collection of data—a
class—using a meaningful word. Second, it informs readers how to create elements of this class
and how to decide whether some arbitrary piece of data belongs to the collection.

Here is a data definition for one of the above examples:

;s A Temperature is a Number. < data definition

; dinterpretation represents Celsius degrees

http://www.ccs.neu.edu/home/matthias/HtDP2e/Draft/part one.html

Page 36 of 146

2017-01-30

hami68744
Callout
data definition

I Fixed-Size Data Page 37 of 146

The first line introduces the name of the data collection, Temperature, and tells us that the class
consists of all Numbers. So, for example, if we ask whether 102 is a temperature, you can respond
with “yes” because 162 is a number and all numbers are temperatures. Similarly, if we ask
whether "cold" is a Temperature, you will say “no” because no string belongs to Temperature.
And, if we asked you to make up a sample Temperature, you might come up with something like
-400.

If you happen to know that the lowest possible temperature is approximately -274C, you may
wonder whether it is possible to express this knowledge in a data definition. Since our data
definitions are really just English descriptions of classes, you may indeed define the class of
temperatures in a much more accurate manner than shown here. In this book, we use a stylized
form of English for such data definitions, and the next chapter introduces the style for imposing
constraints such as “larger than -274.”

So far, you have encountered the names of four classes of data: Number, String, Image, and
Boolean. With that, formulating a new data definition means nothing more than introducing a
new name for an existing form of data, say, “temperature” for numbers. Even this limited
knowledge, though, suffices to explain the outline of our design process.

The Process Once you understand how to represent input information as data and to interpret
output data as information, the design of an individual function proceeds according to a
straightforward process:

L. Express how you wish to represent information as data. A one-line comment suffices:

Representation comment

; We use numbers to represent centimeters.

Formulate data definitions, like the one for Temperature above for the classes of data you |Data definition

consider critical for the success of your program.

[\

Write down a signature, a purpose statement, and a function header.

A function signature is a comment that tells the readers of your design how many inputs your |Function signature

function consumes, from what classes they are drawn, and what kind of data it produces. Here
are three examples for functions that respectively

o consume one String and produce a Number:
; String -> Number

o consume a Temperature and produce a String:
; Temperature -> String

As this signature points out, introducing a data definition as an alias for an existing form of
data makes it easy to read the intention behind signatures.

Nevertheless, we recommend to stay away from aliasing data definitions for now. A
proliferation of such names can cause quite some confusion. It takes practice to balance the
need for new names and the readability of programs, and there are more important ideas to
understand for now.

o consume a Number, a String, and an Image:
; Number String Image -> Image

Stop! What does this function produce?

http://www.ccs.neu.edu/home/matthias/HtDP2e/Draft/part one.html 2017-01-30

hami68744
Text Box
Function signature

hami68744
Text Box
Data definition

hami68744
Text Box
Representation comment

I Fixed-Size Data Page 38 of 146

A purpose statement is a BSL comment that summarizes the purpose of the function in a single |Purpose statement
line. If you are ever in doubt about a purpose statement, write down the shortest possible
answer to the question

what does the function compute?

Every reader of your program should understand what your functions compute without having
to read the function itself.

A multi-function program should also come with a purpose statement. Indeed, good
programmers write two purpose statements: one for the reader who may have to modify the
code and another one for the person who wishes to use the program but not read it.

Finally, a header is a simplistic function definition, also called a stub. Pick one parameter for
each input data class in the signature; the body of the function can be any piece of data from |Header

the output class. The following three function headers match the above three signatures:
° (define (f a-string) 0)

°o (define (g n) "a")

° (define (h num str 1img) (empty-scene 100 100))

Our parameter names reflect what kind of data the parameter represents. Sometimes, you may
wish to use names that suggest the purpose of the parameter.

When you formulate a purpose statement, it is often useful to employ the parameter names to
clarify what is computed. For example,

; Number String Image -> Image signature

; adds s to img, «——|purpose statement

; y pixels from the top and 10 from the left
(define (add-image y s img)
(empty-scene 100 100)) %—header
At this point, you can click the RUN button and experiment with the function. Of course, the
result is always the same value, which makes these experiments quite boring.

3. Illustrate the signature and the purpose statement with some functional examples. To construct |Func tional examples |
a functional example, pick one piece of data from each input class from the signature and
determine what you expect back.

Suppose you are designing a function that computes the area of a square. Clearly this function
consumes the length of the square’s side, and that is best represented with a (positive) number.
Assuming you have done the first process step according to the recipe, you add the examples
between the purpose statement and the header and get this:

5 Number -> Number signature

; computes the area of a square with side len %_purpose statement

5 given: 2, expect: 4

; given: 7, expect: 49

(define/ffarea-of-square len) 0) %—header

{. The next gtep is to take inventory, to understand what are the givens and what we need to
compute/ For the simple functions |Body template
we are ¢onsidering right now, we We owe the term “inventory” to Stephen Bloch.

functional examples

http://www.ccs.neu.edu/home/matthias/HtDP2e/Draft/part one.html 2017-01-30

hami68744
Text Box
Functional examples

hami68744
Text Box
Purpose statement

hami68744
Text Box
Header

hami68744
Text Box
Body template

hami68744
Callout
signature

hami68744
Callout
purpose statement

hami68744
Polygon Line

hami68744
Callout
header

hami68744
Polygon Line

hami68744
Callout
signature

hami68744
Callout
purpose statement

hami68744
Callout
header

hami68744
Callout
functional examples

I Fixed-Size Data Page 39 of 146

know that they are given data via parameters. While parameters are placeholders for values
that we don’t know yet, we do know that it is from this unknown data that the function must
compute its result. To remind ourselves of this fact, we replace the function’s body with a
template.

For now, the template contains just the parameters, so that the preceding example looks like
this:

(define (area-of-square len) <__-
(... len ...)) template

The dots remind you that this isn’t a complete function, but a template, a suggestion for an
organization.

The templates of this section look boring. As soon as we introduce new forms of data,
templates become interesting, too.

5. It is now time to code. In general, to code means to program, though often in the narrowest
possible way, namely, to write executable expressions and function definitions.

To us, coding means to replace the body of the function with an expression that attempts to
compute from the pieces in the template what the purpose statement promises. Here is the
complete definition for area-of-square:

5 Number -> Number signature

; computes the area of a square with side len

Representation comment and
data definition are missing

; given: 2, expect: 4

5 given: 7, expect: 49

(define (area-of-square len)

(sar len)) <—{template replaced by completed code

Number String Image -> Image signature

; adds s to img, y pixels from top, 10 pixels to the left %—purpose statement
; given:

H 5 for vy,

H "hello" for s, and

H (empty-scene 100 100) for img

; expected: functional examples
H (place-image (text "hello" 10 "red") 10 5 ...)
H where ... is (empty-scene 100 100)

(define (add-image y s img)
(place-image (text s 10 "red") 10 y img))

Figure 15: The completion of design step 5

To complete the add-image function takes a bit more work than that: see figure 15. In Representation comment and
particular, the function needs to turn the given string s into an image, which is then plajdata definition are missing
into the given scene.

5. The last step of a proper design is to test the function on the examples that you worked out
before. For now, testing works like this. Click the RUN button and enter function applications
that match the examples in the interactions area:

> (area-of-square 2)
4
> (area-of-square 7)
49

http://www.ccs.neu.edu/home/matthias/HtDP2e/Draft/part one.html 2017-01-30

hami68744
Callout
template

hami68744
Callout
signature

hami68744
Text Box
Representation comment and data definition are missing

hami68744
Callout
template replaced by completed code

hami68744
Callout
signature

hami68744
Callout
purpose statement

hami68744
Polygon Line

hami68744
Callout
functional examples

hami68744
Text Box
Representation comment and data definition are missing

I Fixed-Size Data

Page 44 of 146

; when needed, big-bang obtains the image of the currenﬂ% purpose statement

; state of the world by evaluating (render cw)

; clock-tick-handler: WorldState -> WorldState é—funCtlon Slgnature
; for each tick of the clock, big-bang obtains the next

; state of the world from (clock-tick-handler cw) %—purpose statement

; key-stroke-handler: WorldState String -> WorldState
;5 for each key stroke, big-bang obtains the next state
; from (key-stroke-handler cw ke) where ke is the key

; stroke to obtain the new world state

; mouse-event-handler:

H WorldState Number Number String -> WorldState

; for each mouse gesture, big-bang obtains the next state
; from (mouse-event-handler cw x y me) where x and y are
; the coordinates of the event and me 1is its description

; end?: WorldState -> Boolean
5 when needed, big-bang evaluates (end? cw) to determine
5 whether the program should stop

Figure 17: Signatures for interaction functions

Assuming that you have a rudimentary understanding of the workings of big-bang, you can focus
on the truly important problem of designing world programs. Let’s construct a concrete example
for the following design recipe:

Sample Problem Design a program that moves a car from left to right on the world
canvas, three pixels per clock tick.

For this problem statement, it is easy to imagine scenes for the domain:

In this book, we often refer to the domain of an interactive big-bang program as a “world,” and
we speak of designing “world programs.”

The design recipe for world programs, like the one for functions, is a tool for systematically
moving from a problem statement to a working program. It consists of three big steps and one
small one:

L. For all those properties of the world that remain the same over time and are needed to render
it as an Image, introduce constants. In BSL, we specify such constants via definitions. For the
purpose of world programs, we distinguish between two kinds of constants:

a. “Physical” constants describe general attributes of objects in the world, such as the speed or
velocity of an object, its color, its height, its width, its radius, and so forth. Of course these
constants don't really refer to physical facts, but many are analogous to physical aspects of
the real world.

http://www.ccs.neu.edu/home/matthias/HtDP2e/Draft/part one.html

2017-01-30

hami68744
Callout
function signature

hami68744
Callout
purpose statement

hami68744
Polygon Line

hami68744
Polygon Line

hami68744
Callout
purpose statement

I Fixed-Size Data Page 45 of 146

In the context of our sample problem, the radius of the car’s wheels and the distance
between the wheels are such “physical” constants:

(define WIDTH-OF-WORLD 200)

(define WHEEL-RADIUS 5)
(define WHEEL-DISTANCE (* WHEEL-RADIUS 5))

Note how the second constant is computed from the first.

b. Graphical constants are images of objects in the world. The program composes them into
images that represent the complete state of the world.

Here are graphical constants for wheel images of our sample car:

(define WHEEL
(circle WHEEL-RADIUS '"solid" "black"))

We suggest you experiment in DrRacket’s
interaction area to develop such graphical
constants.

(define SPACE

(rectangle ... WHEEL-RADIUS ... "white"))
(define BOTH-WHEELS

(beside WHEEL SPACE WHEEL))

Graphical constants are usually computed, and the computations tend to involve physical
constants and other images.

It is good practice to annotate constant definitions with a comment that explains what they
mean.

2. Those properties that change over time—in reaction to clock ticks, key strokes, or mouse
actions—give rise to the current state of the world. Your task is to develop a data
representation for all possible states of the world. The development results in a data definition,
which comes with a comment that tells readers how to represent world information as data
and how to interpret data as information about the world.

Choose simple forms of data to represent the state of the world.

For the running example, it is the car’s distance to the left margin that changes over time.
While the distance to the right margin changes, too, it is obvious that we need only one or the
other to create an image. A distance is measured in numbers, so the following is an adequate
data definition:

; A WorldState is a Number. <——{data definition

; interpretation the number of pixels between
; the left border of the scene and the car

An alternative is to count the number of clock ticks that have passed and to use this number as
the state of the world. We leave this design variant as an exercise.

3. Once you have a data representation for the state of the world, you need to design a number of
functions so that you can form a valid big-bang expression.

http://www.ccs.neu.edu/home/matthias/HtDP2e/Draft/part one.html 2017-01-30

hami68744
Polygon Line

hami68744
Callout
data definition

I Fixed-Size Data

9 15
(rectangle 2 20 "solid" "brown")))

to create a tree-like shape. Also add a clause to the big-bang expression that stops the animation
when the car has disappeared on the right side.

After settling on a first data representation for world states, a careful programmer may have to
revisit this fundamental design decision during the rest of the design process. For example, the
data definition for the sample problem represents the car as a point. But (the image of) the car
isn’t just a mathematical point without width and height. Hence, the interpretation
statement—the number of pixels from the left margin—is an ambiguous statement. Does this
statement measure the distance between the left margin and the left end of the car? Its center
point? Or even its right end? We ignored this issue here and leave it to BSL’s image primitives to
make the decision for us. If you don’t like the result, revisit the data definition above and modify
it or its interpretation statement to adjust to your taste.

Exercise 42. Modify the interpretation of the sample data definition so that a state denotes the
x-coordinate of the right-most edge of the car. I

Exercise 43. Let’s work through the same problem statement with a time-based data definition:

5 An AnimationState is a Number. E data definition

; interpretation the number of clock ticks

; since the animation started

Like the original data definition, this one also equates the states of the world with the class of
numbers. Its interpretation, however, explains that the number means something entirely
different.

Design functions tock and render and develop a big-bang expression so that you get once again
an animation of a car traveling from left to right across the world’s canvas.

How do you think this program relates to animate from Prologue: How to Program?

Use the data definition to design a program that moves the car according to a sine wave. Don't try
to drive like that. I

We end the section with an illustration of mouse event handling, which also illustrates the

advantages that a separation of view and model provide.

Dealing with mouse movements is occasionally tricky because it isn't exactly what it seems to be.
For a first idea of why that is, read On Mice and Keys.
Suppose we wish to allow people to move the car through “hyperspace:”

Sample Problem Design a program that moves a car across the world canvas, from left
to right, at the rate of three pixels per clock tick. If the mouse is clicked anywhere on
the canvas, the car is placed at the x-coordinate of that point.

The bold part is the addition to the sample problem from above.

When we are confronted with a modified problem, we use the design process to guide us to the
necessary changes. If used properly, this process naturally determines what we need to add to our
existing program to cope with the addition to the problem statement. So here we go:

http://www.ccs.neu.edu/home/matthias/HtDP2e/Draft/part one.html

Page 49 of 146

2017-01-30

hami68744
Polygon Line

hami68744
Callout
data definition

