CS2500 Exam 2 — Fall 2014

Name:

Husky email id:

Section (Ahmed/Lerner/Razzaqg/Shivers):

e Write down the answers in the
space provided.

e You may use the usual primitives
and expression forms, including
those suggested in hints; for every-
thing else, define it.

. . . Problem | Points /out of

e To save time writing, you may write 1 16

'(sqr 3) = 9 3 15

instead of 3 16

(check-expect (sqr 3) 9) 7 30

You may also write the Greek letter 3 32

A instead of lambda, if you wish. Extra 15

e Some basic test taking advice: Total 146
Before you start answering any Base 131

problems, read every problem, so
your brain can be thinking about
the harder problems in background
while you knock off the easy ones.

Good luck!

Problem 1 Give the signatures for these two functions.

(define (f op elements)
(map (lambda (elt) (+ 10 (op elt)))
elements))

(define (g opl op2)
(lambda (x) (opl (op2 (opl x))))

Problem 2 Consider the following data definition:

;5; A NumTree (binary tree with numbers at the leaves) is one of:
;53 — Number

;33 — (make-node NumTree NumTree)

(define-struct node (left right))

Design a function, count-winners, that consumes a tree and a test predicate, and
returns the number of leaves that satisfy the predicate (that is, the number of leaves
that cause the test to return true.) For example, we could use count-winners to
determine that treel below has 3 positive leaves, or 2 odd leaves, etc. (You may

refer to treel in your tests/examples.)

(define treel (make-node 3
(make-node (make-node 8 0)

7))

[Here is a blank page if you need more space to write answers.]

Problem 3 Continuing on with NumTrees from problem 2, we can define a data
definition that gives a path through a tree, from the root to some subtree, as a list
of left/right directions:

;55 Dir = ’left | ’right

;;; Directions = [List-of Dir]
;55 MaybeDirections is one of:
;5 — ’fail

;33 — Directions

So, for example, a Directions of ’(left left right) means: “Start at
the root of the tree, go to its left child, then go to that node’s left child, then go to
that node’s right child.”

Design a function, tree-nav, that navigates a tree: it consumes a NumTree
and a Directions, and produces the subtree you obtain by starting at the root of
the given tree and following the directions.

For example, following the directions ’ (left left right) when given the
tree

(define treel (make-node (make-node (make-node 8 0)
(make-node 1 3))
(make-node (make-node 2 7)

(make-node 9 4))))

would produce the subtree 0. (Note that this set of directions got you all the way
to a leaf, but other directions, such as ’ (left left) might only get you to an
internal node structure, which is perfectly fine.)

You may assume that the directions are valid directions for the given tree (that
is, you don’t need to explicitly handle “bad directions”).

If you wish, you may refer to treel in your examples.

[Here is a blank page if you need more space to write answers.]

Problem 4 The composition f o g of two functions f and g is defined by the
equation

(f o g)(x) = fg(x)).

e (11 pts) Design the function compose, which takes two functions, f and g,
and returns their composition f o g. (Caution: it’s easy to get parts of the
signature flipped around—better double-check this carefully.)

(Note: You can’t use check-expect to compare two functions. But you
can apply two number-producing functions to the same input, and compare
the result numbers with check-expect...)

e (19 pts) Design the function 1ist-compose, that takes one argument, a list
of functions, and composes them together. For example,

(list-compose (list cos sqr addl))

produces the function h(z) = cos((x + 1)?).

Your definition of 1ist-compose may not explicitly recur, but you may use
a loop function.

You may assume that all functions in the list consume and produce the same
kind of values. That is, 1ist-compose may not be used to compose even?
with sqr. (This will keep your signature manageable.)

[Here is a blank page if you need more space to write answers.]

Problem S You are working for a national grocery chain, designing software for
a smartphone app that will help shoppers keep track of their shopping lists as they
shop for groceries. You come up with the following data definition:

;;; Kind = ’produce | ’meat | ’dairy | ’bakery
;55 An Item is a (make-item Kind String Number)
;5 Shoppinglist = [List-of Item]

(define item (kind name price))
For example:

(make-item ’produce "Broccoli" 3.27) ; Broccoli is $3.27/bunch this week.
(make-item ’dairy "Gallon milk" 3.75) ; A gallon of milk is $3.75.

For all parts of this problem, do not use explicit recursion. Instead, use a loop
function—but do not use apply.

e (15 pts) Design a function, total-price, that consumes a ShoppinglList
and produces the total price of all the items in the list.

e (13 pts) Design a function, expensive-items, that consumes a price (a
number) and a ShoppingList, and produces a list of all the items in the
shopping list that exceed this price.

e (13 pts) Your grocery store has an early-bird special, that allows shoppers
who purchase groceries between 4:00 am and 5:00 am to enjoy a discount
of 7% on all items.

Design a function, discount, that consumes a ShoppingList whose items
have regular prices, and produces that shopping list, but with all prices re-
duced by 7%. (For example, if some item in the input list has a price of $10,
it will have a price of $9.30 in the output list.)

e (13 pts) One of your checkout clerks is a committed vegetarian and refuses
to deal with shopping carts that have any meat. (There’s really nothing
to be done—his mother is the CEQO.) You’ve been asked for a function,
vegetarian?, that determines if a ShoppingList is entirely free of meat
items. Design this function.

[Here is a blank page if you need more space to write answers.]

10

[Here is another blank page if you need more space to write answers.]

11

Problem 6 (Extra credit)
Leafy trees! Consider the following data definition:

;33 A Tree is one of

;55 — ’leaf

;3 ; — (make-node Tree Tree)
(define-struct node (left right))

Design a function, leafy-trees, that consumes a non-negative integer and
produces the list of all leafy trees having the given number of leaves. For example,
the list of all leafy trees having exactly three leaves is

(list (make-node ’leaf (make-node ’leaf ’leaf))
(make-node (make-node ’leaf ’leaf) ’leaf)))

12

