COM 1101 Algorithms and Data Structures 1

Final Exam: December 11, 2001

Professors Raab & Rasala

Name: 

Student ID: 

	1: 30
	2: 30
	3: 12
	4: 10
	5: 18
	Total

	
	
	
	
	
	


Problem 1: The StreetAddress Class (30 Points)

In this problem, you will define a class StreetAddress to encapsulate two member data variables number of type int and street of type String.  The class itself, its constructors, and its member functions should all be public.  The member data variables should be protected.  To make the problem easier to grade, you will be asked to supply the definitions in stages rather than all at once.

(A:1) Give the class header for class StreetAddress that would normally enclose the rest of the class definition.

public class StreetAddress {

(B:3) Give the definitions of the two protected member variables number of type int and street of type String. Initialize number to zero and street to the empty String ("").

    protected int number = 0;

    protected String street = "";

(C:1) Define the following set function that should simply store its parameter in the corresponding member data variable.

    public void setNumber(int n) {

        number = n;

    }

(D:4) Define the following set function that should set the street as follows.  If the parameter s is null then set the street to the empty String.  Otherwise, set the street to s.

    public void setStreet(String s) {

        if (s == null)

            street = "";

        else

            street = s; 

    }

(E:2) Define the following set function that should set both member data variables by calling the corresponding single set functions defined in (C) and (D) above.

    public void setStreetAddress(int n, String s) {

        setNumber(n);

        setStreet(s);

    }

(F:4) Define two get functions, one for each member data variable.  You supply the method headers.

    public int getNumber() { return number; }

    public String getStreet() { return street; }

(G:4) Define the following two constructors:

    public StreetAddress() { }

    public StreetAddress(int n, String s) {

        setStreetAddress(n, s);

    }

The second constructor should call the corresponding set function.

(H:4) Define the toString() method for the StreetAddress class.  This function should create and return a String constructed by using the number, one blank, and the street.  You supply the method header.

    public String toString() {

        return number + " " + street;

    }

(I:3) It sometimes happens that a town decides to change the name of a street.  Write a member function

    public void changeStreetName(String oldname, String newname)

that will check if the current street name is the same as oldname and if so will replace the street name with newname.  Use the String function equals to test for equality of two String’s.  Note that s.equals(t) is true if and only if s and t have exactly the same sequence of characters.

    {

        if (street.equals(oldname))

            setStreet(newName);

    }

You will now use the StreetAddress class in a simple manner.

(J:2) Define a variable address of type StreetAddress that contains the following address: 360 Huntington Avenue.

     StreetAddress address = new StreetAddress(360, "Huntington Avenue");

(K:2) Use console.out.println and the toString method of StreetAddress to print the full address to the console.

     console.out.println(address.toString());

Problem 2: The DoubleArray Class (30 Points)

In this problem, you will define some parts of a class DoubleArray that is similar to the class BasicArray.Double used in the laboratory assignments but is not identical.

(A:4) Begin the class definition for class DoubleArray.  This class should have one protected member variable named data of type double[].  Initialize data to null.

public class DoubleArray {

    protected double[] data = null;

(B:4) Define a member function newData that will replace the internal array data with a new array of type double[] of size n.  If n < 0 then replace data with null.

    public void newData(int n) {

        if (n >= 0)

            data = new double[n];

        else

            data = null;

    }

(C:2) Define the following constructor for class DoubleArray:

    public DoubleArray(int n) {

        newData(n);

    }

This constructor should call newData to initialize the object with a new internal data array of size n.

(D:2) Define a set function to set the value of the internal data array at index i to x.

    public void setValue(int i, double x) {

        data[i] = x;

    }

(E:2) Define a get function to extract the value of the internal data array at index i.

    public double getValue(int i) {

        return data[i];

    }

Note that (D) and (E) did not require error checking so that it is the responsibility of the caller to avoid a NullPointerException.

(F:4) Use the functions defined so far for class DoubleArray to perform the following sample tasks:

(A) Define a DoubleArray object A of size 100.

(B) Using the function Math.random() that returns a random double value between 0 and 1, write a loop to fill the array A with random values between 0 and 400.

    DoubleArray A = new DoubleArray(100);

    for (int i = 0; i < 100; i++)

        A.setValue(i, 400 * Math.random());

(G:6) Now, returning to the member functions of DoubleArray, define a member function

    public void setLength(int n)

that will set the internal data array to length n if n >= 0 and will set it to null if n < 0.  This function should copy as much of the current data as possible into the new array.
Hints: 

1. Copy a reference to the current data array into a separate variable named olddata.

2. Construct the new data array by calling newData from (B) above.

3. At this point, if either olddata or data is equal to null, then there is nothing to copy so simply return.

4. Determine the minimum of the lengths of olddata and data.

5. Using a loop, copy minimum elements from olddata to data.

    public void setLength(int n) {

        double[] olddata = data;

        newData(n);

        if ((olddata == null) || (data == null))

            return;

        int m = olddata.length;

        int minimum = (m <= n) ? m : n;

        for (int i = 0; i < minimum; i++)

            data[i] = olddata[i];

    }

(H:6) Define a member function sort() that will sort the internal data array in increasing order.  You may choose any one of the following 4 algorithms to implement:
(A) insertion sort

(B) selection sort

(C) quick sort

(D) merge sort

You may not use an algorithm such as bubble sort that has extremely poor performance.  Since the 4 suggested algorithms receive the same credit (6 points), you should choose the algorithm you are most comfortable with.

Use the other side of this sheet if you need additional space.

Solution omitted since we do not want to write all four sorting algorithms here.

Problem 3: Recursion (12 Points)

(A:3) Consider the recursive function F with the following properties:

    F(n) = 0 for n < 0

    F(0) = 1

    F(1) = 1

    F(n) = F(n-2) + F(n-1) for n >= 2

Prepare a table of values for this function.

	F(0)
	F(1)
	F(2)
	F(3)
	F(4)
	F(5)
	F(6)

	1
	1
	2
	3
	5
	8
	13


(B:3) Consider the recursive function G with the following properties:

    G(n) = 0 for n < 0

    G(0) = 1

    G(1) = 2

    G(n) = G(n-2) + 2 * G(n-1) for n >= 2

Prepare a table of values for this function.

	G(0)
	G(1)
	G(2)
	G(3)
	G(4)
	G(5)
	G(6)

	1
	2
	5
	12
	29
	70
	169


(C:6) Implement the function G using efficient recursion supported by a recursive helper function HelperG.  We give the function headers.

    public static double G(int n) {

        if (n < 0)  return 0;

        if (n == 0) return 1;

        if (n == 1) return 2;

        return HelperG(n, 1, 1, 2);

    }

    public static double HelperG(int n, int k, double a, double b) {

        if (n <= k) return b;

        return HelperG(n, k+1, b, a + 2*b);

    }

In HelperG, assume: k <= n, a is the value of G at k-1, and b is the value of G at k.

Problem 4: The QuickSort Split Algorithm (10 Points)

Assume that the sample array below has 10 elements with initial values as specified.

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	value
	72
	94
	16
	51
	63
	38
	29
	47
	85
	10


Assume that the following array value has been selected as the split algorithm pivot.

	pivot
	51


You should now simulate one pass of the quicksort split algorithm, that is, you will do the first split phase.  You will have two nested loops, the i-loop that moves right and the j-loop that moves left.  The initial values of i and j in this sample are i = 0 and j = 9.

The main loop executes while (i <= j).  The i-loop stops at an array cell whose value is greater than or equal to the pivot.  The j-loop stops at a value that is less than or equal to the pivot.  If, after these loops, it is still the case that i <= j then you must do the swap step:

  (a) swap the cell values at i and j; 

  (b) increment i
  (c) decrement j
In the table below, show the execution of the split algorithm up to the end of the main while loop but before the recursive calls.  On the right give the new values of i and j after the i-loop, j-loop, or swap step (if a swap occurs).  In the center of the table show the current state of the array values after each swap step.  There is no need to show the array values after the i-loop and j-loop since the array values do not change during these loops.  For your convenience, cells that do not need to be filled have been shaded.

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	i
	j

	value
	72
	94
	16
	51
	63
	38
	29
	47
	85
	10
	0
	9

	i-loop
	
	
	
	
	
	
	
	
	
	
	0
	

	j-loop
	
	
	
	
	
	
	
	
	
	
	
	9

	swap?
	10
	94
	16
	51
	63
	38
	29
	47
	85
	72
	1
	8

	i-loop
	
	
	
	
	
	
	
	
	
	
	1
	

	j-loop
	
	
	
	
	
	
	
	
	
	
	
	7

	swap?
	10
	47
	16
	51
	63
	38
	29
	94
	85
	72
	2
	6

	i-loop
	
	
	
	
	
	
	
	
	
	
	3
	

	j-loop
	
	
	
	
	
	
	
	
	
	
	
	6

	swap?
	10
	47
	16
	29
	63
	38
	51
	94
	85
	72
	4
	5

	i-loop
	
	
	
	
	
	
	
	
	
	
	4
	

	j-loop
	
	
	
	
	
	
	
	
	
	
	
	5

	swap?
	10
	47
	16
	29
	38
	63
	51
	94
	85
	72
	5
	4

	i-loop
	
	
	
	
	
	
	
	
	
	
	
	

	j-loop
	
	
	
	
	
	
	
	
	
	
	
	

	swap?
	
	
	
	
	
	
	
	
	
	
	
	


Problem 5: The Circle Class (18 Points)

Assume that class Circle is partly defined and that this class has 2 protected member data variables:

center of type Point2D.Double
radius of type double
Assume that the class definition guarantees that center is a non-null object.

On the next page of this exam, you will find a summary of the member functions of Point2D.Double and Rectangle2D.Double that you will need in this problem.
(A:2) Define a member function Diameter() that returns the diameter of the Circle object.

    public double Diameter() { return 2 * radius; }

(B:4) Define a member function Area() that returns the area of the Circle object.  Note that the value of the mathematical constant ( is given in Java as Math.PI.

    public double Area() { return Math.PI * radius * radius; }

(C:6) Define a member function of class Circle
    public Rectangle2D.Double createBounds()

that constructs and returns the Rectangle2D.Double object that exactly contains the Circle object.

    {

        double x = center.getX() - radius;

        double y = center.getY() - radius;

        double size = Diameter();

        return new Rectangle2D.Double(x, y, size, size);

    }

(D:6) Define a member function of class Circle
    public boolean isInside(Point2D.Double point)

that returns true if the given point is non-null and is inside the Circle object and returns false otherwise.

    {

        if (point != null)

            return center.distance(point) <= radius;

        return false;

    }

Selected Methods of Point2D.Double

    public Point2D.Double()

    public Point2D.Double(double x, double y)

    public void setLocation(double x, double y)

    public double getX()

    public double getY()

    public double distance(double pointX, double pointY)

    public double distance(Point2D.Double point)

Selected Methods of Rectangle2D.Double

    public Rectangle2D.Double()

    public Rectangle2D.Double(double x, double y, double w, double h)

    public void setRect(double x, double y, double w, double h)

    public double getX()

    public double getY()

    public double getWidth()

    public double getHeight()


COM 1101 Final Exam Fall 2001
Page 5

